版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,AB是的直徑,弦CD交AB于點P,,,,則CD的長為()A. B. C. D.82、下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.3、如圖,ABCD是正方形,△CDE繞點C逆時針方向旋轉(zhuǎn)90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形4、下表記錄了一名球員在罰球線上投籃的結(jié)果:投籃次數(shù)50100150200250400500800投中次數(shù)286387122148242301480投中頻率0.5600.6300.5800.6100.5920.6050.6020.600根據(jù)頻率的穩(wěn)定性,估計這名球員投籃一次投中的概率約是()A.0.560 B.0.580 C.0.600 D.0.6205、如圖,與相切于點,連接交于點,點為優(yōu)弧上一點,連接,,若,的半徑,則的長為()A.4 B. C. D.16、如圖,是的直徑,弦,垂足為,若,則()A.5 B.8 C.9 D.107、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.8、下面的圖形中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,過⊙O外一點P,作射線PA,PB分別切⊙O于點A,B,,點C在劣弧AB上,過點C作⊙O的切線分別與PA,PB交于點D,E.則______度.2、圓錐的底面直徑是80cm,母線長90cm.它的側(cè)面展開圖的圓心角和圓錐的全面積依次是______.3、有五張正面分別標有數(shù)字,,0,1,2的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為,將該卡片放回洗勻后從中再任取一張,將該卡片上的數(shù)字記為,則為非負數(shù)的概率為________.4、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如圖所示,將△ABC繞點A按逆時針方向旋轉(zhuǎn)90°后得到△AB′C′.則圖中陰影部分的面積為_____.5、點(2,-3)關(guān)于原點的對稱點的坐標為_____.6、如圖,正方形ABCD的邊長為1,⊙O經(jīng)過點C,CM為⊙O的直徑,且CM=1.過點M作⊙O的切線分別交邊AB,AD于點G,H.BD與CG,CH分別交于點E,F(xiàn),⊙O繞點C在平面內(nèi)旋轉(zhuǎn)(始終保持圓心O在正方形ABCD內(nèi)部).給出下列四個結(jié)論:①HD=2BG;②∠GCH=45°;③H,F(xiàn),E,G四點在同一個圓上;④四邊形CGAH面積的最大值為2.其中正確的結(jié)論有_____(填寫所有正確結(jié)論的序號).7、邊長相等、各內(nèi)角均為120°的六邊形ABCDEF在直角坐標系內(nèi)的位置如圖所示,,點B在原點,把六邊形ABCDEF沿x軸正半軸繞頂點按順時針方向,從點B開始逐次連續(xù)旋轉(zhuǎn),每次旋轉(zhuǎn)60°,經(jīng)過2021次旋轉(zhuǎn)之后,點B的坐標是_____________.三、解答題(7小題,每小題0分,共計0分)1、如圖,在方格紙中,已知頂點在格點處的△ABC,請畫出將△ABC繞點C旋轉(zhuǎn)180°得到的△A'B'C'.(需寫出△A'B'C'各頂點的坐標).2、如圖,點A是外一點,過點A作出的一條切線.(使用尺規(guī)作圖,作出一條即可,不要求寫出作法,不要求證明,但要保留作圖痕跡)3、如圖1,在中,,,點D為AB邊上一點.(1)若,則______;(2)如圖2,將線段CD繞著點C逆時針旋轉(zhuǎn)90°得到線段CE,連接AE,求證:;(3)如圖3,過點A作直線CD的垂線AF,垂足為F,連接BF.直接寫出BF的最小值.4、如圖,是由一些大小相同的小正方體組合成的簡單幾同體,請在下面方格紙中分別畫出從它的左面和上面看到的形狀圖.5、解題與遐想.如圖,Rt△ABC的內(nèi)切圓與斜邊AB相切于點D,AD=4,BD=5.求Rt△ABC的面積.王小明:這道題算出來面積剛好是20,太湊巧了吧.剛好是4×5=20,有種白算的感覺…趙麗華:我把4和5換成m、n再算一遍,△ABC的面積總是m?n!確實非常神奇了…數(shù)學劉老師:大家想一想,既然結(jié)果如此簡單到極致,不計算能不能得到呢?比如,拼圖?霍佳:劉老師,我在想另一個東西,這個圖能不能尺規(guī)畫出來啊感覺圖都定了.我怎么想不出來呢?計算驗證(1)通過計算求出Rt△ABC的面積.拼圖演繹(2)將Rt△ABC分割放入矩形中(左圖),通過拼圖能直接“看”出“20”請在圖中畫出拼圖后的4個直角三角形甲、乙、丙、丁的位置,作必要標注并簡要說明.尺規(guī)作圖(3)尺規(guī)作圖:如圖,點D在線段AB上,以AB為斜邊求作一個Rt△ABC,使它的內(nèi)切圓與斜邊AB相切于點D.(保留作圖的痕跡,寫出必要的文字說明)6、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點G,且,過點C作的垂線交的延長線于點H.(1)判斷與⊙的位置關(guān)系并說明理由;(2)若,求弧的長.7、如圖,內(nèi)接于,BC是的直徑,D是AC延長線上一點.(1)請用尺規(guī)完成基本作圖:作出的角平分線交于點P.(保留作圖痕跡,不寫作法)(2)在(1)所作的圖形中,過點P作,垂足為E.則PE與有怎樣的位置關(guān)系?請說明理由.-參考答案-一、單選題1、A【分析】過點作于點,連接,根據(jù)已知條件即可求得,根據(jù)含30度角的直角三角形的性質(zhì)即可求得,根據(jù)勾股定理即可求得,根據(jù)垂徑定理即可求得的長.【詳解】解:如圖,過點作于點,連接,AB是的直徑,,,,在中,故選A【點睛】本題考查了勾股定理,含30度角的直角三角形的性質(zhì),垂徑定理,掌握以上定理是解題的關(guān)鍵.2、B【分析】把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,根據(jù)中心對稱圖形的概念求解.【詳解】A.不是中心對稱圖形,故本選項不符合題意;B.是中心對稱圖形,故本選項符合題意;C.不是中心對稱圖形,故本選項不符合題意;D.不是中心對稱圖形,故本選項不符合題意.故選:B.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.3、D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)推出相等的邊CE=CF,旋轉(zhuǎn)角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點C逆時針方向旋轉(zhuǎn)90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì),掌握圖形旋轉(zhuǎn)前后的大小和形狀不變是解決問題的關(guān)鍵.4、C【分析】根據(jù)頻率估計概率的方法并結(jié)合表格數(shù)據(jù)即可解答.【詳解】解:∵由頻率分布表可知,隨著投籃次數(shù)越來越大時,頻率逐漸穩(wěn)定到常數(shù)0.600附近,∴這名球員在罰球線上投籃一次,投中的概率為0.600.故選:C.【點睛】本題主要考查了利用頻率估計概率,概率的得出是在大量實驗的基礎上得出的,不能單純的依靠幾次決定.5、B【分析】連接OB,根據(jù)切線性質(zhì)得∠ABO=90°,再根據(jù)圓周角定理求得∠AOB=60°,進而求得∠A=30°,然后根據(jù)含30°角的直角三角形的性質(zhì)解答即可.【詳解】解:連接OB,∵AB與相切于點B,∴∠ABO=90°,∵∠BDC=30°,∴∠AOB=2∠BDC=60°,在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,∴OA=2OB=4,∴,故選:B.【點睛】本題考查切線的性質(zhì)、圓周角定理、直角三角形的銳角互余、含30°角的直角三角形性質(zhì)、勾股定理,熟練掌握相關(guān)知識的聯(lián)系與運用是解答的關(guān)鍵.6、C【分析】連接,根據(jù)垂徑定理可得,設的半徑為,則,進而勾股定理列出方程求得半徑,進而求得【詳解】解:如圖,連接,∵是的直徑,弦,∴設的半徑為,則在中,,即解得即故選C【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.7、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側(cè)有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關(guān)鍵.8、A【詳解】解:A、既是軸對稱圖形又是中心對稱圖形,此項符合題意;B、是中心對稱圖形,不是軸對稱圖形,此項不符題意;C、是軸對稱圖形,不是中心對稱圖形,此項不符題意;D、是軸對稱圖形,不是中心對稱圖形,此項不符題意;故選:A.【點睛】本題考查了中心對稱圖形和軸對稱圖形,熟記中心對稱圖形的定義(在平面內(nèi),把一個圖形繞某點旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么這兩個圖形互為中心對稱圖形)和軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關(guān)鍵.二、填空題1、65【分析】連接OA,OC,OB,根據(jù)四邊形內(nèi)角和可得,依據(jù)切線的性質(zhì)及角平分線的判定定理可得DO平分,EO平分,再由各角之間的數(shù)量關(guān)系可得,,根據(jù)等量代換可得,代入求解即可.【詳解】解:如圖所示:連接OA,OC,OB,∵PA、PB、DE與圓相切于點A、B、E,∴,,,∵,∴,∵,∴DO平分,EO平分,∴,,∴,,∴,故答案為:65.【點睛】題目主要考查圓的切線的性質(zhì),角平分線的判定和性質(zhì),四邊形內(nèi)角和等,理解題意,作出相應輔助線,綜合運用這些知識點是解題關(guān)鍵.2、160°,5200【分析】由題意知,圓錐的展開圖扇形的r半徑為90cm,弧長l為.代入扇形弧長公式求解圓心角;代入扇形面積公式求出圓錐側(cè)面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開圖扇形的r半徑為90cm,弧長l為∵∴解得∵∴故答案為:160°,.【點睛】本題考查了扇形的圓心角與面積.解題的關(guān)鍵在于運用扇形的弧長與面積公式進行求解.難點在于求出公式中的未知量.3、【分析】求出為負數(shù)的事件個數(shù),進而得出為非負數(shù)的事件個數(shù),然后求解即可.【詳解】解:兩次取卡片共有種可能的事件;兩次取得卡片數(shù)字乘積為負數(shù)的事件為等8種可能的事件∴為非負數(shù)共有種∴為非負數(shù)的概率為故答案為:.【點睛】本題考查了列舉法求隨機事件的概率.解題的關(guān)鍵在于求出事件的個數(shù).4、【分析】利用勾股定理求出AC及AB的長,根據(jù)陰影面積等于求出答案.【詳解】解:由旋轉(zhuǎn)得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴陰影部分的面積==,故答案為:..【點睛】此題考查了求不規(guī)則圖形的面積,正確掌握勾股定理、30度角直角三角形的性質(zhì)、扇形面積計算公式及分析出陰影面積的構(gòu)成特點是解題的關(guān)鍵.5、(-2,3)【分析】根據(jù)“關(guān)于原點對稱的點的坐標關(guān)系,橫坐標與縱坐標都互為相反數(shù)”,即可求解.【詳解】點(2,-3)關(guān)于原點的對稱點的坐標是(-2,3).故答案為:
(-2,3).【點睛】本題主要考查點關(guān)于原點對稱,解決本題的關(guān)鍵是要熟練掌握關(guān)于原點對稱點的坐標的關(guān)系.6、②③④【分析】根據(jù)切線的性質(zhì),正方形的性質(zhì),通過三角形全等,證明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判斷前兩個結(jié)論;運用對角互補的四邊形內(nèi)接于圓,證明∠GHF+∠GEF=180°,取GH的中點P,連接PA,則PA+PC≥AC,當PC最大時,PA最小,根據(jù)直徑是圓中最大的弦,故PC=1時,PA最小,計算即可.【詳解】∵GH是⊙O的切線,M為切點,且CM是⊙O的直徑,∴∠CMH=90°,∵四邊形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可證,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,無法確定HD=2BG,故①錯誤;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正確;∵△CMH≌△CDH,BD是正方形的對角線,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根據(jù)對角互補的四邊形內(nèi)接于圓,∴H,F(xiàn),E,G四點在同一個圓上,故③正確;∵正方形ABCD的邊長為1,∴=1=,∠GAH=90°,AC=取GH的中點P,連接PA,∴GH=2PA,∴=,∴當PA取最小值時,有最大值,連接PC,AC,則PA+PC≥AC,∴PA≥AC-PC,∴當PC最大時,PA最小,∵直徑是圓中最大的弦,∴PC=1時,PA最小,∴當A,P,C三點共線時,且PC最大時,PA最小,∴PA=-1,∴最大值為:1-(-1)=2-,∴四邊形CGAH面積的最大值為2,∴④正確;故答案為:②③④.【點睛】本題考查了切線的性質(zhì),直徑是最大的弦,三角形的全等,直角三角形斜邊上的中線,四點共圓,正方形的性質(zhì),熟練掌握圓的性質(zhì),靈活運用直角三角形的性質(zhì),線段最短原理是解題的關(guān)鍵.7、【分析】根據(jù)旋轉(zhuǎn)找出規(guī)律后再確定坐標.【詳解】∵正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,∴每6次翻轉(zhuǎn)為一個循環(huán)組循環(huán),∵,∴經(jīng)過2021次翻轉(zhuǎn)為第337循環(huán)組的第5次翻轉(zhuǎn),點B在開始時點C的位置,∵,∴,∴翻轉(zhuǎn)前進的距離為:,如圖,過點B作BG⊥x于G,則∠BAG=60°,∴,,∴,∴點B的坐標為.故答案為:.【點睛】題考查旋轉(zhuǎn)的性質(zhì)與正多邊形,由題意找出規(guī)律是解題的關(guān)鍵.三、解答題1、A'(-1,-3),B'(1,-1),C'(-2,0),畫圖見解析.【分析】先畫出點A,B關(guān)于點C中心對稱的點A',B',再連接A',B',C即可解題.【詳解】解:A關(guān)于點C中心對稱的點A'(-1,-3),B關(guān)于點C中心對稱的點B'(1,-1),C關(guān)于點C中心對稱的點C'(-2,0),如圖,△A'B'C'即為所求作圖形.【點睛】本題考查中心對稱圖形,是基礎考點,掌握相關(guān)知識是解題關(guān)鍵.2、見解析【分析】先作線段的垂直平分線.確定的中點,再以中點為圓心,一半為半徑作圓交于點,然后作直線,則根據(jù)圓周角定理可得為所求.【詳解】如圖,直線AB就是所求作的,(作法不唯一,作出一條即可,需要有作圖痕跡)【點睛】本題考查了作圖復雜作圖,解題的關(guān)鍵是掌握復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復雜作圖拆解成基本作圖,逐步操作.3、(1)5(2)證明見解析(3)【分析】(1)過C作CM⊥AB于M,根據(jù)等腰三角形的性質(zhì)求出CM和DM,再根據(jù)勾股定理計算即可;(2)連BE,先證明,即可得到直角三角形ABE,利用勾股定理證明即可;(3)取AC中點N,連接FN、BN,根據(jù)三角形BFN中三邊關(guān)系判斷即可.(1)過C作CM⊥AB于M,∵,∴∵∴∴在Rt中(2)連接BE,∵,,,∴,∴∴,∴在Rt中∴∴(3)取AC中點N,連接FN、BN,∵,,∴∵AF垂直CD∴∵AC中點N,∴∴∵三角形BFN中∴∴當B、F、N三點共線時BF最小,最小值為.【點睛】本題考查等腰直角三角形的常用輔助線以及直角三角形斜邊上的中線,解題的關(guān)鍵是根據(jù)等腰直角三角形作斜邊垂線或者構(gòu)造“手拉手模型”.4、圖見解析.【分析】根據(jù)左視圖和俯視圖的畫法即可得.【詳解】解:畫圖如下:【點睛】本題考查了左視圖和俯視圖,熟練掌握左視圖(是指從左面觀察物體所得到的圖形)和俯視圖(是指從上面觀察物體所得到的圖形)的畫法是解題關(guān)鍵.5、(1)S△ABC=20;(2)見解析;(3)見解析.【分析】(1)設⊙O的半徑為r,由切線長定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,進而求得結(jié)果;(2)根據(jù)切線長定理可證明甲和乙兩個三角形全等,丙丁兩個三角形全等,故將甲乙圖形放在OE為邊的上方,將丙丁以OP為邊放在右側(cè),圍成矩形的邊長是4和5;(3)可先計算∠AFB=135°,根據(jù)“定弦對定角”作F點的軌跡,根據(jù)切線性質(zhì),過點F作AB的垂線,再根據(jù)直徑所對的圓周角是90°,確定點C.【詳解】解:(1)如圖1,設⊙O的半徑為r,連接OE,OF,∵⊙O內(nèi)切于△ABC,∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,∴∠OEC=∠OFC=∠C=90°,∴四邊形ECFO是矩形,∴CF=OE=r,CE=OF=r,∴AC=4+r,BC=5+r,在Rt△ABC中,由勾股定理得,(r+4)2+(r+5)2=92,∴r2+9r=20,∴S△ABC=====20;(2)如圖2,(3)設△ABC的內(nèi)切圓記作⊙F,∴AF和BF平分∠BAC和∠ABC,F(xiàn)D⊥AB,∴∠BAF=∠CAB,∠ABF=,∴∠BAF+∠ABF=(∠BAC+∠ABC)==45°,∴∠AFB=135°,可以按以下步驟作圖(如圖3):①以BA為直徑作圓,作AB的垂直平分線交圓于點E,②以E為圓心,AE為半徑作圓,③過點D作AB的垂線,交圓于F,④連接EF并延長交圓于C,連接AC,BC,則△ABC就是求作的三角形.【點睛】本題考查三角形的內(nèi)切圓性質(zhì)、切線長定理、勾股定理、矩形的判定與性質(zhì)、尺規(guī)作圖-作垂線,熟練掌握相關(guān)知識的聯(lián)系與運用是解答的關(guān)鍵.6、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點M,根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 骨關(guān)節(jié)炎的膳食調(diào)理
- 員工執(zhí)行力提升培訓課件
- 2025年銅及銅合金材合作協(xié)議書
- 提升糖耐量受損患者生活質(zhì)量
- 腸炎患者的日常飲食管理
- 營養(yǎng)管護理創(chuàng)新方法
- 眼科護理質(zhì)量與安全管理
- 肺心病患者用藥護理與注意事項
- 基礎護理心理支持
- 吸熱和散熱課件
- 法院起訴收款賬戶確認書范本
- 15ZJ001 建筑構(gòu)造用料做法
- 課堂觀察與評價的基本方法課件
- 私募基金內(nèi)部人員交易管理制度模版
- 針對低層次學生的高考英語復習提分有效策略 高三英語復習備考講座
- (完整)《走遍德國》配套練習答案
- 考研準考證模板word
- 周練習15- 牛津譯林版八年級英語上冊
- 電力電纜基礎知識課件
- 代理記賬申請表
- 模型五:數(shù)列中的存在、恒成立問題(解析版)
評論
0/150
提交評論