版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》綜合練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,已知四邊形ABCD和四邊形BCEF均為平行四邊形,∠D=60°,連接AF,并延長交BE于點P,若AP⊥BE,AB=3,BC=2,AF=1,則BE的長為()A.5 B.2 C.2 D.32、如圖所示,正方形ABCD的面積為16,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一點P,使PD+PE的和最小,則最小值為()A.2 B.3 C.4 D.63、如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于點E.若AB=4,BC=8,則圖中陰影部分的面積為()A.8 B.10 C.12.5 D.7.54、如圖,已知菱形ABCD的對角線AC,BD的長分別為6,8,AE⊥BC,垂足為點E,則AE的長是()A.5 B.2 C. D.5、下面四個命題:①直角三角形的兩邊長為3,4,則第三邊長為5;②,③對角線相等且互相垂直的四邊形是正方形;④若四邊形中,ADBC,且,則四邊形是平行四邊形.其中正確的命題的個數(shù)為()A.0 B.1 C.2 D.3第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在平行四邊形ABCD中,AB=4,BC=5,以點C為圓心,適當長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是_____.2、如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F,G分別在邊AB,AD上,則cos∠EFG的值為________.3、如圖,已知正方形ABCD的邊長為6,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM若AE=2,則FM的長為___.4、如圖,在矩形中,,,點是線段上的一點(不與點,重合),將△沿折疊,使得點落在處,當△為等腰三角形時,的長為___________.5、如圖,在△ABC中,D,E分別是邊AB,AC的中點,∠B=50°.現(xiàn)將△ADE沿DE折疊點A落在三角形所在平面內(nèi)的點為A1,則∠BDA1的度數(shù)為_____.三、解答題(5小題,每小題10分,共計50分)1、綜合與實踐(1)如圖1,在正方形ABCD中,點M、N分別在AD、CD上,若∠MBN=45°,則MN,AM,CN的數(shù)量關(guān)系為.(2)如圖2,在四邊形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,點M、N分別在AD、CD上,若∠MBN=∠ABC,試探索線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請寫出猜想,并給予證明.(3)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點M、N分別在DA、CD的延長線上,若∠MBN=∠ABC,試探究線段MN、AM、CN的數(shù)量關(guān)系為.2、在中,,斜邊,過點作,以AB為邊作菱形ABEF,若,求的面積.3、如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點G.(1)求證:AE=CF;(2)若∠ABE=62°,求∠GFC+∠BCF的值.4、在平面直角坐標系中,過A(0,4)的直線a垂直于y軸,點M(9,4)為直線a上一點,若點P從點M出發(fā),以每秒2cm的速度沿直線a向左移動,點Q從原點同時出發(fā),以每秒1cm的速度沿x軸向右移動,(1)幾秒后PQ平行于y軸?(2)在點P、Q運動的過程中,若線段OQ=2AP,求點P的坐標.5、已知如圖,在中,點是邊上一點,連接,點是上一動點,連接.(1)如圖1,當時,連接,延長交于點,求證:;(2)如圖2,以為直角邊作等腰,連接,若,當點在運動過程中,求周長的最小值.
-參考答案-一、單選題1、D【解析】【分析】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,先證∠DHC=90o,再證四邊形ADEF是平行四邊形,最后利用勾股定理得出結(jié)果.【詳解】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,∵四邊形ABCD是平行四邊形,AB=3,∠ADC=60o,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60o,∵DH⊥BC,∴∠DHC=90o,∴∠ADC+∠CDH=90°,∴∠CDH=30°,在Rt△DCH中,CH=CD=,DH=,∴,∵四邊形BCEF是平行四邊形,∴AD=BC=EF,AD∥EF,∴四邊形ADEF是平行四邊形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴,∴,故選D.【點睛】本題考查了平行四邊形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練運用這些性質(zhì)解決問題.2、C【解析】【分析】先求得正方形的邊長,依據(jù)等邊三角形的定義可知BE=AB=4,連接BP,依據(jù)正方形的對稱性可知PB=PD,則PE+PD=PE+BP.由兩點之間線段最短可知:當點B、P、E在一條直線上時,PE+PD有最小值,最小值為BE的長.【詳解】解:連接BP.∵四邊形ABCD為正方形,面積為16,∴正方形的邊長為4.∵△ABE為等邊三角形,∴BE=AB=4.∵四邊形ABCD為正方形,∴△ABP與△ADP關(guān)于AC對稱.∴BP=DP.∴PE+PD=PE+BP.由兩點之間線段最短可知:當點B、P、E在一條直線上時,PE+PD有最小值,最小值=BE=4.故選:C.【點睛】本題考查的是等邊三角形的性質(zhì)、正方形的性質(zhì)和軸對稱—最短路線問題,熟知“兩點之間,線段最短”是解答此題的關(guān)鍵.3、B【解析】【分析】利用折疊的性質(zhì)可得∠ACF=∠ACB,由AD∥BC,可得出∠CAD=∠ACB,進而可得出AE=CE,根據(jù)矩形性質(zhì)可得AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,利用勾股定理可求出x的值,再利用三角形的面積公式即可求出△ACE的面積,則可得出答案.【詳解】解:由折疊的性質(zhì),∠ACF=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACF,∴AE=CE.∵四邊形ABCD為矩形,∴AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,根據(jù)勾股定理得,即42+(8﹣x)2=x2,∴x=5,∴圖中陰影部分的面積=S△ACEAE?AB=×5×4=10.故選:B【點睛】本題考查了翻折變換、矩形的性質(zhì)、勾股定理以及三角形的面積,利用勾股定理求出AE的長是解題的關(guān)鍵.4、D【解析】【分析】根據(jù)菱形的性質(zhì)得出BO、CO的長,在Rt△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】解:∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=,故選:D.【點睛】此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.5、B【解析】【分析】①直角三角形兩直角邊長為3,4,斜邊長為5;②x的取值范圍不同;③對角線相等且互相垂直平分的四邊形是正方形;④熟記平行四邊形的判定定理進行證明.【詳解】解:①3,4沒說是直角邊的長還是斜邊的長,故第三邊答案不唯一,故①錯誤.②等式左邊的值小于0,等式右邊的值大于或等于0,故②錯誤.③必須加上平分這個條件,否則不會是正方形,故③錯誤.④延長CB至E,使BE=AB,延長AD至F,使DF=DC,則四邊形ECFA是平行四邊形,∴∠E=∠F,由∠ABC=2∠E,∠ADC=2∠F,知∠ABC=∠ADC,又AD∥BC,故∠ABC+∠BAD=180°,即∠ADC+∠BAD=180°,∴AB∥CD,四邊形ABCD是平行四邊形.故④正確.故選:B.【點睛】本題考查判斷命題正誤的能力以及掌握勾股定理,正方形的判定定理,平行四邊形的判定定理以及化簡代數(shù)式注意取值范圍等.二、填空題1、1【解析】【分析】根據(jù)基本作圖,得到EC是∠BCD的平分線,由AB∥CD,得到∠BEC=∠ECD=∠ECB,從而得到BE=BC,利用線段差計算即可.【詳解】根據(jù)基本作圖,得到EC是∠BCD的平分線,∴∠ECD=∠ECB,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠BEC=∠ECD,∴∠BEC=∠ECB,∴BE=BC=5,∴AE=BE-AB=5-4=1,故答案為:1.【點睛】本題考查了角的平分線的尺規(guī)作圖,等腰三角形的判定,平行線的性質(zhì),平行四邊形的性質(zhì),熟練掌握尺規(guī)作圖,靈活運用等腰三角形的判定定理是解題的關(guān)鍵.2、【解析】【分析】根據(jù)題意連接BE,連接AE交FG于O,如圖,利用菱形的性質(zhì)得△BDC為等邊三角形,∠ADC=120°,再在在Rt△BCE中計算出BE=CE=,然后證明BE⊥AB,利用勾股定理計算出AE,從而得到OA的長;設(shè)AF=x,根據(jù)折疊的性質(zhì)得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理計算出OF,再利用余弦的定義求解即可.【詳解】解:連接BE,連接AE交FG于O,如圖,∵四邊形ABCD為菱形,∠A=60°,∴△BDC為等邊三角形,∠ADC=120°,∵E點為CD的中點,∴CE=DE=1,BE⊥CD,在Rt△BCE中,BE=CE=,∵AB∥CD,∴BE⊥AB,∴.∴,設(shè)AF=x,∵菱形紙片翻折,使點A落在CD的中點E處,∴FE=FA=x,∴BF=2-x,在Rt△BEF中,(2-x)2+()2=x2,解得:,在Rt△AOF中,,∴.故答案為:.【點睛】本題考查了折疊的性質(zhì)以及菱形的性質(zhì),注意掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.3、5【解析】【分析】由旋轉(zhuǎn)性質(zhì)可證明△EDF≌△MDF,從而EF=FM;設(shè)FM=EF=x,則可得BF=8?x,由勾股定理建立方程即可求得x.【詳解】由旋轉(zhuǎn)的性質(zhì)可得:DE=DM,CM=AE=2,∠ADE=∠CDM,∠EDM=90゜∵四邊形ABCD是正方形∴∠ADC=∠B=90゜,AB=BC=6∴∠ADE+∠FDC=∠ADC?∠EDF=45゜∴∠FDC+∠CDM=45゜即∠MDF=45゜∴∠EDF=∠MDF在△EDF和△MDF中∴△EDF≌△MDF(SAS)∴EF=FM設(shè)EF=FM=x則∴∵在Rt△EBF中,由勾股定理得:解得:故答案為:5【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識,運用了方程思想,關(guān)鍵是證明三角形全等.4、或【解析】【分析】根據(jù)題意分,,三種情況討論,構(gòu)造直角三角形,利用勾股定理解決問題.【詳解】解:∵四邊形是矩形∴,∵將△沿折疊,使得點落在處,∴,,設(shè),則①當時,如圖過點作,則四邊形為矩形,在中在中即解得②當時,如圖,設(shè)交于點,設(shè)垂直平分在中即在中,即聯(lián)立,解得③當時,如圖,又垂直平分垂直平分此時重合,不符合題意綜上所述,或故答案為:或【點睛】本題考查了矩形的性質(zhì),勾股定理,等腰三角形的性質(zhì)與判定,垂直平分線的性質(zhì),分類討論是解題的關(guān)鍵.5、80°【解析】【分析】由翻折的性質(zhì)得∠ADE=∠A1DE,由中位線的性質(zhì)得DE//BC,由平行線的性質(zhì)得∠ADE=∠B=50°,即可解決問題.【詳解】解:由題意得:∠ADE=∠A1DE;∵D、E分別是邊AB、AC的中點,∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°?100°=80°.故答案為:80°.【點睛】本題主要考查了翻折變換及其應(yīng)用問題;同時還考查了三角形的中位線定理等幾何知識點.熟練掌握各性質(zhì)是解題的關(guān)鍵.三、解答題1、(1)MN=AM+CN;(2)MN=AM+CN,理由見解析;(3)MN=CN-AM,理由見解析【分析】(1)把△ABM繞點B順時針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到點M'、C、N三點共線,再由∠MBN=45°,可得∠M'BN=∠MBN,從而證得△NBM≌△NBM',即可求解;(2)把△ABM繞點B順時針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得點M'、C、N三點共線,再由∠MBN=∠ABC,可得到∠M'BN=∠MBN,從而證得△NBM≌△NBM',即可求解;(3)在NC上截取CM'=AM,連接BM',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可證得△ABM≌△CBM',從而得到AM=CM',BM=BM',∠ABM=∠CBM',進而得到∠MAM'=∠ABC,再由∠MBN=∠ABC,可得∠MBN=∠M'BN,從而得到△NBM≌△NBM',即可求解.【詳解】解:(1)如圖,把△ABM繞點B順時針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC,∴∠BCM'+∠BCD=180°,∴點M'、C、N三點共線,∵∠MBN=45°,∴∠ABM+∠CBN=45°,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M'N=M'C+CN,∴MN=M'C+CN=AM+CN;(2)MN=AM+CN;理由如下:如圖,把△ABM繞點B順時針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,∵∠A+∠C=180°,∴∠BCM'+∠BCD=180°,∴點M'、C、N三點共線,∵∠MBN=∠ABC,∴∠ABM+∠CBN=∠ABC=∠MBN,∴∠CBN+∠M'BC=∠MBN,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M'N=M'C+CN,∴MN=M'C+CN=AM+CN;(3)MN=CN-AM,理由如下:如圖,在NC上截取CM'=AM,連接BM',∵在四邊形ABCD中,∠ABC+∠ADC=180°,∴∠C+∠BAD=180°,∵∠BAM+∠BAD=180°,∴∠BAM=∠C,∵AB=BC,∴△ABM≌△CBM',∴AM=CM',BM=BM',∠ABM=∠CBM',∴∠MAM'=∠ABC,∵∠MBN=∠ABC,∴∠MBN=∠MAM'=∠M'BN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M'N=CN-CM',∴MN=CN-AM.故答案是:MN=CN-AM.【點睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì)和判定,圖形的旋轉(zhuǎn),根據(jù)題意做適當輔助線,得到全等三角形是解題的關(guān)鍵.2、4【分析】分別過點E、C作EH、CG垂直AB,垂足為點H、G,則CG是斜邊AB上的高;在菱形ABEF中,利用平行線的性質(zhì)不難得到CG=EH;菱形的對角相等,四條邊相等,聯(lián)系含30°角的直角三角形的性質(zhì)求出EH,問題即可解答?!驹斀狻拷猓喝鐖D,分別過作垂足為點四邊形ABEF為菱形,,,,在中,,根據(jù)題意,,根據(jù)平行線間的距離處處相等,.答:的面積為4.【點睛】本題考查了菱形的性質(zhì),直角三角形的性質(zhì),平行線間的距離及三角形面積的計算,正確利用菱形的四邊相等及直角三角形中,30角所對直角邊是斜邊的一半是解題的關(guān)鍵.3、(1)證明見解析;(2)73°.【分析】(1)根據(jù)正方形的性質(zhì)及各角之間的關(guān)系可得:,由全等三角形的判定定理可得,再根據(jù)其性質(zhì)即可得證;(2)根據(jù)垂直及等腰三角形的性質(zhì)可得,再由三角形的外角的性質(zhì)可得,由此計算即可.【詳解】(1)證明:∵四邊形ABCD是正方形,∴,,∵,∴,∵°,,∴,在和中,,∴,∴;(2)解:∵BE⊥BF,∴,又∵,∴,∵四邊形ABCD是正方形,∴,∵,∴,∴.∴的值為.【點睛】題目主要考查全等三角形的判定和性質(zhì),正方形的性質(zhì),三角形的外角性質(zhì),理解題意,熟練運用各個定理性質(zhì)是解題關(guān)鍵.4、(1)3秒后平行于軸;(2)或.【分析】(1)設(shè)秒后平行于軸,先求出的長,再根據(jù)矩形的判定與性質(zhì)可得,由此建立方程,解方程即可得;(2)分①點在點右側(cè),②點在點左側(cè)兩種情況,分別根據(jù)建立方程,解方程即可得.【詳解】解:(1),,設(shè)秒后平行于軸,,垂直于軸,垂直于軸,平行于軸,四邊形是矩形,,即,解得,即3秒后平行于軸;(2)由題意得:經(jīng)過秒后,,垂直于軸,點在直線上,且點的坐標為,點的縱坐標為4,①當點在點右側(cè)時,,由得:,解得,,此時點的坐標為;②當點在點左側(cè)時,,由得:,解得,,此時點的坐標為;綜上,點的坐標為或.【點睛】本題考查了坐標與圖形、矩形的判定與性質(zhì)等知識點,較難的是題(2),正確分兩種情況討論是解題關(guān)鍵.5、(1)證明見解析;(2)【分析】(1)通過證明△CEK≌△BEF及△KED≌△FED即可證明;(2)延長CE到點P,使EP=CE,先證明點G在過點P且與CE垂直的直線PN上運動,再作點E關(guān)于點P的對稱點Q,連接BQ交PN于點G,此時△BEG的周長最小,求出此時GE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學第三學年(化學)物理化學實驗試題及答案
- 2025年大學大三(高級財務(wù)會計)合并報表實踐測試試題及答案
- AI參考模版制作技術(shù)教程
- 當前醫(yī)患關(guān)系現(xiàn)狀論文
- 2025四川綿陽市鹽亭發(fā)展投資集團有限公司招聘職能部門及所屬子公司人員7人備考題庫及完整答案詳解
- 材料考研就業(yè)前景解讀
- 2026江蘇省人民醫(yī)院臨床醫(yī)學研究院(I期研究中心)派遣制人員招聘1人備考題庫及答案詳解參考
- 2026廣東龍門產(chǎn)業(yè)投資集團有限公司招聘職工3人備考題庫及參考答案詳解一套
- 2026內(nèi)蒙古錫林郭勒盟蘇尼特右旗應(yīng)急管理局招聘2人備考題庫參考答案詳解
- 2026四川成都市成華區(qū)市場監(jiān)督管理局招聘編外人員1人備考題庫及答案詳解(奪冠系列)
- 廠區(qū)雜草施工方案(3篇)
- 幫困基金管理辦法職代會
- 行吊安全操作規(guī)程及注意事項
- 艾歐史密斯熱水器CEWH-50P5說明書
- ktv客遺物管理制度
- 制造業(yè)公司獎懲管理制度
- 養(yǎng)老院公司年會策劃方案
- 司機入職心理測試題及答案
- 退休支部換屆工作報告
- T/CMES 37002-2022景區(qū)玻璃類游樂和觀景設(shè)施建造單位能力條件要求
- T/CATCM 029-2024中藥材產(chǎn)地加工(趁鮮切制)生產(chǎn)技術(shù)規(guī)范
評論
0/150
提交評論