阜陽(yáng)師范大學(xué)信息工程學(xué)院《大數(shù)據(jù)實(shí)時(shí)開(kāi)發(fā)技術(shù)實(shí)踐》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁(yè)
阜陽(yáng)師范大學(xué)信息工程學(xué)院《大數(shù)據(jù)實(shí)時(shí)開(kāi)發(fā)技術(shù)實(shí)踐》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁(yè)
阜陽(yáng)師范大學(xué)信息工程學(xué)院《大數(shù)據(jù)實(shí)時(shí)開(kāi)發(fā)技術(shù)實(shí)踐》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁(yè)
阜陽(yáng)師范大學(xué)信息工程學(xué)院《大數(shù)據(jù)實(shí)時(shí)開(kāi)發(fā)技術(shù)實(shí)踐》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁(yè)
阜陽(yáng)師范大學(xué)信息工程學(xué)院《大數(shù)據(jù)實(shí)時(shí)開(kāi)發(fā)技術(shù)實(shí)踐》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共2頁(yè)阜陽(yáng)師范大學(xué)信息工程學(xué)院《大數(shù)據(jù)實(shí)時(shí)開(kāi)發(fā)技術(shù)實(shí)踐》2024-2025學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在大數(shù)據(jù)項(xiàng)目的規(guī)劃階段,需要明確項(xiàng)目的目標(biāo)和需求。假設(shè)一個(gè)金融機(jī)構(gòu)計(jì)劃開(kāi)展大數(shù)據(jù)項(xiàng)目以降低風(fēng)險(xiǎn)。以下哪個(gè)步驟是首先要進(jìn)行的?()A.確定所需的數(shù)據(jù)類型和來(lái)源B.評(píng)估現(xiàn)有技術(shù)架構(gòu)是否支持大數(shù)據(jù)處理C.分析潛在的風(fēng)險(xiǎn)場(chǎng)景和業(yè)務(wù)需求D.制定項(xiàng)目的預(yù)算和時(shí)間表2、在大數(shù)據(jù)的聚類分析中,有多種算法可供選擇。假設(shè)我們有一個(gè)包含客戶消費(fèi)行為數(shù)據(jù)的數(shù)據(jù)集,需要將客戶分為不同的群體。以下哪種聚類算法可能不太適合處理這種數(shù)據(jù)?()A.K-Means算法B.層次聚類算法C.密度聚類算法D.關(guān)聯(lián)規(guī)則挖掘算法3、在大數(shù)據(jù)存儲(chǔ)中,索引的使用可以提高數(shù)據(jù)查詢效率。假設(shè)一個(gè)大規(guī)模的數(shù)據(jù)集,經(jīng)常需要根據(jù)某個(gè)字段進(jìn)行查詢。以下哪種索引類型可能最適合?()A.B樹(shù)索引,適用于范圍查詢B.哈希索引,快速定位特定值C.位圖索引,適用于布爾型字段D.以上索引類型效果相同,取決于具體數(shù)據(jù)分布4、在大數(shù)據(jù)處理中,數(shù)據(jù)ETL(Extract,Transform,Load)是一個(gè)重要的環(huán)節(jié),以下關(guān)于數(shù)據(jù)ETL的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)ETL包括數(shù)據(jù)抽取、數(shù)據(jù)轉(zhuǎn)換和數(shù)據(jù)加載三個(gè)步驟B.數(shù)據(jù)ETL可以提高數(shù)據(jù)的質(zhì)量和可用性C.數(shù)據(jù)ETL只需要對(duì)數(shù)據(jù)進(jìn)行簡(jiǎn)單的處理,不需要考慮數(shù)據(jù)的業(yè)務(wù)含義D.數(shù)據(jù)ETL需要根據(jù)具體的業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn)進(jìn)行定制化處理5、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)治理變得越來(lái)越重要。假設(shè)一個(gè)企業(yè)擁有多個(gè)業(yè)務(wù)系統(tǒng),數(shù)據(jù)分散在不同的數(shù)據(jù)庫(kù)和文件中,缺乏統(tǒng)一的管理和規(guī)范。以下哪項(xiàng)不是數(shù)據(jù)治理的主要目標(biāo)?()A.確保數(shù)據(jù)的準(zhǔn)確性和完整性B.提高數(shù)據(jù)的訪問(wèn)速度C.保障數(shù)據(jù)的安全性和合規(guī)性D.促進(jìn)數(shù)據(jù)的共享和流通6、在大數(shù)據(jù)環(huán)境中,數(shù)據(jù)集成涉及多個(gè)數(shù)據(jù)源的整合。以下關(guān)于數(shù)據(jù)集成過(guò)程中可能遇到的問(wèn)題,哪一項(xiàng)描述不準(zhǔn)確?()A.數(shù)據(jù)源的數(shù)據(jù)格式不一致B.不同數(shù)據(jù)源的數(shù)據(jù)語(yǔ)義存在差異C.數(shù)據(jù)集成會(huì)導(dǎo)致數(shù)據(jù)量大幅減少D.數(shù)據(jù)的重復(fù)和沖突7、在大數(shù)據(jù)處理中,為了處理數(shù)據(jù)傾斜問(wèn)題,以下哪種方法經(jīng)常被采用?()A.數(shù)據(jù)分區(qū)B.增加并行度C.數(shù)據(jù)采樣D.數(shù)據(jù)預(yù)處理8、假設(shè)要對(duì)大數(shù)據(jù)進(jìn)行預(yù)測(cè)分析,例如預(yù)測(cè)股票價(jià)格走勢(shì),以下哪種機(jī)器學(xué)習(xí)算法可能會(huì)表現(xiàn)較好?()A.線性回歸B.決策樹(shù)C.支持向量機(jī)D.隨機(jī)森林9、在處理大規(guī)模數(shù)據(jù)的分類問(wèn)題時(shí),支持向量機(jī)(SVM)是一種有效的算法。以下關(guān)于SVM的描述,錯(cuò)誤的是?()A.它可以處理線性不可分的數(shù)據(jù)B.它對(duì)大規(guī)模數(shù)據(jù)的訓(xùn)練速度很快C.它通過(guò)尋找最優(yōu)超平面來(lái)進(jìn)行分類D.它的性能受核函數(shù)的選擇影響10、大數(shù)據(jù)在物流領(lǐng)域有重要的應(yīng)用價(jià)值,以下關(guān)于大數(shù)據(jù)在物流中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以優(yōu)化物流路徑規(guī)劃,降低運(yùn)輸成本B.有助于實(shí)現(xiàn)庫(kù)存的精準(zhǔn)管理和預(yù)測(cè)C.大數(shù)據(jù)在物流中的應(yīng)用主要依賴人工經(jīng)驗(yàn),自動(dòng)化程度較低D.能夠?qū)崟r(shí)跟蹤貨物運(yùn)輸狀態(tài),提高物流服務(wù)的透明度11、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)質(zhì)量問(wèn)題可能導(dǎo)致錯(cuò)誤的分析結(jié)果。假設(shè)一個(gè)數(shù)據(jù)集存在大量噪聲數(shù)據(jù)。以下哪種方法可以減少噪聲的影響?()A.直接刪除含有噪聲的數(shù)據(jù)點(diǎn)B.采用平滑技術(shù)對(duì)噪聲數(shù)據(jù)進(jìn)行處理C.忽略噪聲數(shù)據(jù),只關(guān)注主要的數(shù)據(jù)趨勢(shì)D.增加更多的數(shù)據(jù)來(lái)稀釋噪聲的影響12、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)隱私法規(guī)日益嚴(yán)格。假設(shè)一個(gè)公司在處理用戶數(shù)據(jù)時(shí),以下哪種做法符合合規(guī)要求?()A.在未獲得用戶明確同意的情況下,將用戶數(shù)據(jù)用于第三方營(yíng)銷B.對(duì)用戶數(shù)據(jù)進(jìn)行匿名化處理后,無(wú)需再遵循隱私法規(guī)C.建立完善的數(shù)據(jù)隱私管理制度,定期進(jìn)行合規(guī)審計(jì)D.只要數(shù)據(jù)不涉及敏感信息,就可以隨意使用13、大數(shù)據(jù)的處理常常需要處理海量的圖像和視頻數(shù)據(jù)。假設(shè)要對(duì)一個(gè)大型視頻數(shù)據(jù)集進(jìn)行目標(biāo)檢測(cè)和跟蹤。以下哪種技術(shù)最適合這種計(jì)算機(jī)視覺(jué)任務(wù)?()A.傳統(tǒng)的圖像處理算法B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)C.支持向量機(jī)D.決策樹(shù)14、大數(shù)據(jù)分析常常需要處理非結(jié)構(gòu)化數(shù)據(jù),如文本、圖像等。假設(shè)我們有大量的產(chǎn)品評(píng)論文本數(shù)據(jù),想要提取其中的關(guān)鍵信息。以下哪種技術(shù)最適用?()A.數(shù)據(jù)倉(cāng)庫(kù)技術(shù),將文本數(shù)據(jù)轉(zhuǎn)換為結(jié)構(gòu)化格式B.自然語(yǔ)言處理(NLP)技術(shù),理解和分析文本內(nèi)容C.數(shù)據(jù)挖掘中的分類算法,對(duì)文本進(jìn)行分類D.傳統(tǒng)的數(shù)據(jù)庫(kù)查詢語(yǔ)言,篩選出關(guān)鍵文本15、在大數(shù)據(jù)存儲(chǔ)中,為了提高數(shù)據(jù)的可靠性和容錯(cuò)性,常常采用冗余存儲(chǔ)。假設(shè)有一個(gè)數(shù)據(jù)塊,系統(tǒng)設(shè)置了多個(gè)副本,當(dāng)其中一個(gè)副本損壞時(shí),以下哪種恢復(fù)方式最快速?()A.從其他副本中直接復(fù)制B.重新計(jì)算損壞的數(shù)據(jù)C.等待副本自動(dòng)修復(fù)D.以上方式恢復(fù)速度相同16、在進(jìn)行大數(shù)據(jù)分析時(shí),需要選擇合適的數(shù)據(jù)分析工具。如果數(shù)據(jù)量非常大,且需要進(jìn)行復(fù)雜的機(jī)器學(xué)習(xí)算法訓(xùn)練,以下哪種工具較為合適?()A.ExcelB.PythonC.RD.SPSS17、大數(shù)據(jù)分析中的異常檢測(cè)是一項(xiàng)重要任務(wù)。假設(shè)我們有一個(gè)電商網(wǎng)站的交易數(shù)據(jù)集,需要檢測(cè)異常的交易行為。以下哪種方法常用于異常檢測(cè)?()A.基于規(guī)則的檢測(cè),設(shè)定固定的閾值判斷異常B.聚類分析,將異常交易與正常交易聚類分開(kāi)C.關(guān)聯(lián)規(guī)則挖掘,發(fā)現(xiàn)異常的交易關(guān)聯(lián)模式D.以上方法都可以,根據(jù)數(shù)據(jù)特點(diǎn)選擇合適的18、大數(shù)據(jù)分析方法包括描述性分析、診斷性分析、預(yù)測(cè)性分析和規(guī)范性分析等。以下對(duì)這些分析方法的描述,不正確的是()A.描述性分析主要是對(duì)數(shù)據(jù)進(jìn)行概括和總結(jié),提供數(shù)據(jù)的基本特征B.診斷性分析用于找出導(dǎo)致問(wèn)題發(fā)生的原因C.預(yù)測(cè)性分析基于歷史數(shù)據(jù)預(yù)測(cè)未來(lái)的趨勢(shì)和結(jié)果D.規(guī)范性分析能夠直接給出解決問(wèn)題的具體方案,無(wú)需人工干預(yù)19、在大數(shù)據(jù)處理中,數(shù)據(jù)挖掘是一個(gè)重要的技術(shù),以下關(guān)于數(shù)據(jù)挖掘的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)挖掘用于從大量數(shù)據(jù)中發(fā)現(xiàn)潛在的模式和知識(shí)B.數(shù)據(jù)挖掘可以使用多種算法,如分類、聚類、關(guān)聯(lián)分析等C.數(shù)據(jù)挖掘只適用于特定的行業(yè)和領(lǐng)域,不能廣泛應(yīng)用D.數(shù)據(jù)挖掘需要結(jié)合具體的業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn)進(jìn)行應(yīng)用20、在大數(shù)據(jù)可視化中,為了展示數(shù)據(jù)的分布情況,以下哪種圖表類型通常被使用?()A.直方圖B.箱線圖C.小提琴圖D.以上都是21、在大數(shù)據(jù)的情感分析中,除了文本內(nèi)容,還可以考慮哪些因素來(lái)提高分析的準(zhǔn)確性?()A.作者的社交關(guān)系B.文本發(fā)布的時(shí)間C.文本的長(zhǎng)度D.以上因素都可能對(duì)提高情感分析的準(zhǔn)確性有幫助22、大數(shù)據(jù)中的數(shù)據(jù)隱私保護(hù)至關(guān)重要。假設(shè)一家公司需要對(duì)用戶數(shù)據(jù)進(jìn)行分析,但又要確保用戶隱私不被泄露。以下哪種技術(shù)可以在不暴露原始數(shù)據(jù)的情況下進(jìn)行數(shù)據(jù)分析?()A.數(shù)據(jù)加密B.數(shù)據(jù)脫敏C.差分隱私D.以上都是23、對(duì)于一個(gè)需要處理大規(guī)模實(shí)時(shí)流數(shù)據(jù)的金融大數(shù)據(jù)系統(tǒng),以下哪種技術(shù)能夠滿足高并發(fā)和低延遲的要求?()A.FlinkB.StormC.SparkStreamingD.以上都是24、在大數(shù)據(jù)項(xiàng)目中,數(shù)據(jù)遷移是一個(gè)常見(jiàn)的任務(wù)。假設(shè)要將大量數(shù)據(jù)從一個(gè)舊的存儲(chǔ)系統(tǒng)遷移到新的存儲(chǔ)系統(tǒng),以下哪種策略可能不太可行?()A.一次性全部遷移B.分批次逐步遷移C.先遷移近期使用的數(shù)據(jù),再遷移歷史數(shù)據(jù)D.隨機(jī)選擇部分?jǐn)?shù)據(jù)進(jìn)行遷移25、對(duì)于一個(gè)需要處理大量地理空間數(shù)據(jù)的交通大數(shù)據(jù)系統(tǒng),以下哪種技術(shù)能夠提供有效的位置服務(wù)和路徑規(guī)劃?()A.地理信息系統(tǒng)B.路徑規(guī)劃算法C.空間索引D.以上都是26、在大數(shù)據(jù)的應(yīng)用中,醫(yī)療健康領(lǐng)域是一個(gè)重要的方向。假設(shè)要通過(guò)分析患者的電子病歷數(shù)據(jù)來(lái)發(fā)現(xiàn)疾病的潛在模式和趨勢(shì)。以下哪種數(shù)據(jù)分析方法最適合這個(gè)任務(wù)?()A.生存分析B.因子分析C.主成分分析D.聚類分析27、在構(gòu)建大數(shù)據(jù)處理系統(tǒng)時(shí),需要考慮系統(tǒng)的性能優(yōu)化。以下哪種方法對(duì)于提高大數(shù)據(jù)處理系統(tǒng)的性能最有效?()A.增加硬件資源,如內(nèi)存和CPUB.優(yōu)化數(shù)據(jù)存儲(chǔ)結(jié)構(gòu)和算法C.減少數(shù)據(jù)量D.以上方法結(jié)合使用28、在大數(shù)據(jù)存儲(chǔ)中,NoSQL數(shù)據(jù)庫(kù)具有很多特點(diǎn)。假設(shè)一個(gè)應(yīng)用場(chǎng)景需要快速存儲(chǔ)和檢索大量的非結(jié)構(gòu)化數(shù)據(jù),并且對(duì)數(shù)據(jù)的一致性要求不高。以下哪種NoSQL數(shù)據(jù)庫(kù)可能是最佳選擇?()A.Redis(內(nèi)存數(shù)據(jù)庫(kù))B.Cassandra(分布式寬列存儲(chǔ)數(shù)據(jù)庫(kù))C.MongoDB(文檔數(shù)據(jù)庫(kù))D.Alloftheabove(以上皆是)29、在大數(shù)據(jù)存儲(chǔ)中,列式存儲(chǔ)和行式存儲(chǔ)各有優(yōu)缺點(diǎn)。以下關(guān)于列式存儲(chǔ)和行式存儲(chǔ)的比較,不準(zhǔn)確的是()A.列式存儲(chǔ)適合于批量數(shù)據(jù)讀取和分析,行式存儲(chǔ)適合于頻繁的單行數(shù)據(jù)更新B.列式存儲(chǔ)能夠提高數(shù)據(jù)壓縮比,節(jié)省存儲(chǔ)空間C.行式存儲(chǔ)在數(shù)據(jù)查詢時(shí)的性能優(yōu)于列式存儲(chǔ)D.列式存儲(chǔ)對(duì)于只涉及少數(shù)列的查詢具有優(yōu)勢(shì)30、對(duì)于一個(gè)需要實(shí)時(shí)處理和分析大量流數(shù)據(jù)的應(yīng)用場(chǎng)景,例如實(shí)時(shí)監(jiān)控交通流量,以下哪種技術(shù)架構(gòu)最適合?()A.Hadoop生態(tài)系統(tǒng)B.Spark流處理框架C.傳統(tǒng)的數(shù)據(jù)倉(cāng)庫(kù)D.關(guān)系型數(shù)據(jù)庫(kù)二、編程題(本大題共5個(gè)小題,共25分)1、(本題5分)利用Python語(yǔ)言和TensorFlow框架,構(gòu)建一個(gè)卷積神經(jīng)網(wǎng)絡(luò)(CNN),對(duì)大規(guī)模的手寫數(shù)字圖像進(jìn)行識(shí)別。要求模型具有較高的準(zhǔn)確率。2、(本題5分)使用Hive對(duì)一個(gè)大規(guī)模的用戶搜索關(guān)鍵詞數(shù)據(jù)集進(jìn)行語(yǔ)義分析,找出相關(guān)的搜索意圖和需求。3、(本題5分)給定一個(gè)包含社交媒體用戶關(guān)注和取消關(guān)注數(shù)據(jù)的數(shù)據(jù)集,分析用戶關(guān)系的穩(wěn)定性和變化規(guī)律。4、(本題5分)基于Hive,對(duì)一個(gè)包含用戶搜索歷史數(shù)據(jù)的表進(jìn)行分析,找出用戶的搜索興趣演變趨勢(shì)。5、(本題5分)給定一個(gè)包含電商商品價(jià)格波動(dòng)數(shù)據(jù)的數(shù)據(jù)集,分析價(jià)格波動(dòng)的原因和對(duì)銷售的影響。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋數(shù)據(jù)血緣關(guān)系

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論