鐵門關(guān)職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與決策管理》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁
鐵門關(guān)職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與決策管理》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁
鐵門關(guān)職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與決策管理》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁
全文預(yù)覽已結(jié)束

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記。…………密………………封………………線…………第1頁,共2頁鐵門關(guān)職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與決策管理》2024-2025學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、某電商平臺(tái)想要了解商品銷量與廣告投入之間的關(guān)系,收集了大量數(shù)據(jù)。以下關(guān)于數(shù)據(jù)預(yù)處理的步驟,不正確的是?()A.檢查數(shù)據(jù)的完整性B.直接刪除所有缺失值C.處理異常值D.對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化2、在數(shù)據(jù)分析中,回歸分析是一種常用的方法。以下關(guān)于回歸分析的描述中,錯(cuò)誤的是?()A.回歸分析可以用來建立變量之間的關(guān)系模型B.回歸分析可以分為線性回歸和非線性回歸兩種類型C.回歸分析的結(jié)果可以用來預(yù)測(cè)因變量的值D.回歸分析只能用于預(yù)測(cè)連續(xù)型變量,對(duì)于分類型變量無法處理3、在處理大規(guī)模數(shù)據(jù)時(shí),分布式計(jì)算框架如Hadoop被廣泛應(yīng)用。假設(shè)要對(duì)數(shù)十億行的日志數(shù)據(jù)進(jìn)行分析,以下哪個(gè)Hadoop組件可能主要負(fù)責(zé)數(shù)據(jù)的存儲(chǔ)?()A.HDFSB.MapReduceC.YARND.Hive4、數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量問題會(huì)影響分析結(jié)果的準(zhǔn)確性和可靠性。以下關(guān)于數(shù)據(jù)質(zhì)量的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量包括準(zhǔn)確性、完整性、一致性、時(shí)效性等多個(gè)方面B.數(shù)據(jù)質(zhì)量問題可以通過數(shù)據(jù)清洗、驗(yàn)證和監(jiān)控等方法來解決C.提高數(shù)據(jù)質(zhì)量需要從數(shù)據(jù)的采集、存儲(chǔ)、處理等各個(gè)環(huán)節(jié)入手D.一旦數(shù)據(jù)進(jìn)入數(shù)據(jù)倉(cāng)庫,就不需要再關(guān)注數(shù)據(jù)質(zhì)量問題了5、在數(shù)據(jù)分析的異常檢測(cè)中,假設(shè)要從大量的交易數(shù)據(jù)中找出異常的交易行為,例如高額、頻繁或不符合常規(guī)模式的交易。以下哪種異常檢測(cè)方法可能更能有效地發(fā)現(xiàn)這些異常?()A.基于統(tǒng)計(jì)的方法,設(shè)定閾值判斷異常B.基于距離的方法,計(jì)算數(shù)據(jù)點(diǎn)之間的距離C.基于密度的方法,根據(jù)數(shù)據(jù)的局部密度D.不進(jìn)行異常檢測(cè),認(rèn)為所有交易都是正常的6、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)量可以幫助我們更好地理解數(shù)據(jù)。關(guān)于均值、中位數(shù)和眾數(shù),以下描述錯(cuò)誤的是:()A.均值容易受到極端值的影響B(tài).中位數(shù)是將數(shù)據(jù)排序后位于中間位置的數(shù)值C.眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)值,一定唯一D.對(duì)于偏態(tài)分布的數(shù)據(jù),中位數(shù)可能比均值更能反映數(shù)據(jù)的中心位置7、數(shù)據(jù)分析中的因果推斷旨在確定變量之間的因果關(guān)系,而非僅僅是相關(guān)性。假設(shè)你想研究廣告投入與產(chǎn)品銷售之間的關(guān)系,以下關(guān)于因果推斷方法的選擇,哪一項(xiàng)是最關(guān)鍵的?()A.進(jìn)行隨機(jī)對(duì)照實(shí)驗(yàn),控制其他因素來確定因果關(guān)系B.基于觀察數(shù)據(jù),使用回歸分析來推斷因果關(guān)系C.僅僅依靠相關(guān)系數(shù)來判斷因果關(guān)系D.主觀猜測(cè)和經(jīng)驗(yàn)判斷因果關(guān)系8、在進(jìn)行數(shù)據(jù)挖掘時(shí),分類算法中的決策樹算法具有易于理解和解釋的優(yōu)點(diǎn)。以下哪個(gè)因素不會(huì)影響決策樹的構(gòu)建?()A.特征選擇B.樣本數(shù)量C.數(shù)據(jù)的缺失值D.計(jì)算資源的大小9、數(shù)據(jù)分析中的異常檢測(cè)用于發(fā)現(xiàn)數(shù)據(jù)中的異常值或離群點(diǎn)。假設(shè)我們?cè)诜治錾a(chǎn)線上的產(chǎn)品質(zhì)量數(shù)據(jù),以下哪種異常檢測(cè)方法可能適用于檢測(cè)突然出現(xiàn)的質(zhì)量下降?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.以上都是10、在數(shù)據(jù)分析中,異常值檢測(cè)對(duì)于發(fā)現(xiàn)數(shù)據(jù)中的異常情況非常重要。假設(shè)要檢測(cè)一個(gè)生產(chǎn)線上產(chǎn)品質(zhì)量數(shù)據(jù)中的異常值,這些數(shù)據(jù)受到多種因素的影響。以下哪種異常值檢測(cè)方法在這種工業(yè)生產(chǎn)數(shù)據(jù)中更能準(zhǔn)確地發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于聚類的方法11、在對(duì)一家制造業(yè)企業(yè)的生產(chǎn)數(shù)據(jù)進(jìn)行分析,例如原材料采購(gòu)、生產(chǎn)流程、產(chǎn)品質(zhì)量等,以優(yōu)化生產(chǎn)過程和降低成本。以下哪種數(shù)據(jù)分析工具可能最適合處理大規(guī)模的工業(yè)數(shù)據(jù)?()A.ExcelB.PythonC.SPSSD.SQL12、在評(píng)估數(shù)據(jù)分析模型的性能時(shí),以下指標(biāo)中,不能用于分類問題的是:()A.準(zhǔn)確率B.均方誤差C.召回率D.F1值13、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫用于存儲(chǔ)和管理大量的數(shù)據(jù)。假設(shè)一個(gè)企業(yè)要建立數(shù)據(jù)倉(cāng)庫。以下關(guān)于數(shù)據(jù)倉(cāng)庫的描述,哪一項(xiàng)是錯(cuò)誤的?()A.數(shù)據(jù)倉(cāng)庫中的數(shù)據(jù)通常是經(jīng)過整合和清洗的,質(zhì)量較高B.數(shù)據(jù)倉(cāng)庫支持復(fù)雜的查詢和分析操作,能夠快速返回結(jié)果C.數(shù)據(jù)倉(cāng)庫的數(shù)據(jù)更新頻率較低,一般是定期批量更新D.數(shù)據(jù)倉(cāng)庫可以直接替代業(yè)務(wù)系統(tǒng)中的數(shù)據(jù)庫,用于日常的事務(wù)處理14、在數(shù)據(jù)預(yù)處理階段,對(duì)于含有大量缺失值的數(shù)據(jù),以下哪種處理方法不一定合適?()A.直接刪除含有缺失值的記錄B.用均值、中位數(shù)或眾數(shù)來填充缺失值C.通過建立模型來預(yù)測(cè)缺失值D.對(duì)缺失值不做任何處理15、數(shù)據(jù)分析中的因果推斷用于確定變量之間的因果關(guān)系。假設(shè)要研究廣告投放是否導(dǎo)致銷售額增長(zhǎng),以下關(guān)于因果推斷方法的描述,正確的是:()A.僅僅基于相關(guān)性分析就得出因果結(jié)論,不考慮其他潛在因素B.不進(jìn)行實(shí)驗(yàn)設(shè)計(jì)和控制變量,直接觀察數(shù)據(jù)C.采用隨機(jī)對(duì)照實(shí)驗(yàn)、工具變量法、雙重差分法等因果推斷方法,控制混雜因素,進(jìn)行嚴(yán)謹(jǐn)?shù)姆治龊屯茢啵⒃u(píng)估因果關(guān)系的強(qiáng)度和可靠性D.認(rèn)為因果關(guān)系是顯而易見的,不需要進(jìn)行專門的分析和驗(yàn)證二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)在數(shù)據(jù)分析項(xiàng)目中,如何進(jìn)行需求分析和問題定義?請(qǐng)說明需要考慮的關(guān)鍵因素和常用的方法,并舉例說明。2、(本題5分)在進(jìn)行回歸分析時(shí),如何判斷模型的擬合優(yōu)度?解釋常用的評(píng)估指標(biāo)如R平方值的含義和作用,并說明如何改進(jìn)擬合不好的模型。3、(本題5分)描述數(shù)據(jù)挖掘中的推薦系統(tǒng)的工作原理和常見算法,如協(xié)同過濾、基于內(nèi)容的推薦等,并舉例說明在電商平臺(tái)中的應(yīng)用。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在物流快遞行業(yè),包裹的運(yùn)輸軌跡數(shù)據(jù)、派送時(shí)效數(shù)據(jù)等豐富多樣。分析如何借助數(shù)據(jù)分析手段,如配送路線優(yōu)化、網(wǎng)點(diǎn)布局規(guī)劃等,提高物流配送效率,降低運(yùn)營(yíng)成本,同時(shí)探討在數(shù)據(jù)實(shí)時(shí)更新、地理信息系統(tǒng)應(yīng)用和客戶需求多樣化方面可能面臨的問題及應(yīng)對(duì)方法。2、(本題5分)在醫(yī)療科研領(lǐng)域,臨床實(shí)驗(yàn)數(shù)據(jù)、基因數(shù)據(jù)等大量產(chǎn)生。詳細(xì)論述如何運(yùn)用數(shù)據(jù)分析,例如疾病標(biāo)志物發(fā)現(xiàn)、藥物研發(fā)輔助等,加速醫(yī)療科研進(jìn)展,同時(shí)分析在數(shù)據(jù)質(zhì)量控制、生物信息學(xué)專業(yè)知識(shí)要求和倫理審查方面的挑戰(zhàn)及解決辦法。3、(本題5分)房地產(chǎn)市場(chǎng)的數(shù)據(jù)分析對(duì)于投資決策、價(jià)格預(yù)測(cè)和市場(chǎng)趨勢(shì)分析至關(guān)重要。請(qǐng)全面闡述如何運(yùn)用數(shù)據(jù)分析技術(shù),如時(shí)間序列分析和空間數(shù)據(jù)分析,來評(píng)估房地產(chǎn)價(jià)值、預(yù)測(cè)市場(chǎng)走勢(shì)和確定投資策略,分析數(shù)據(jù)的可靠性和市場(chǎng)不確定性對(duì)分析結(jié)果的影響。4、(本題5分)在制造業(yè)的精益生產(chǎn)管理中,如何利用數(shù)據(jù)分析減少生產(chǎn)過程中的浪費(fèi),提高生產(chǎn)效率和質(zhì)量。5、(本題5分)在交通擁堵治理中,如何利用數(shù)據(jù)分析來識(shí)別擁堵原因、優(yōu)化交通信號(hào)和規(guī)劃道路設(shè)施?請(qǐng)?jiān)敿?xì)闡述數(shù)據(jù)分析在交通管理中的作用、數(shù)據(jù)的實(shí)時(shí)性要求和政策措施的配合。四、案例分析題(本大題共3個(gè)小題,共30分)1、(本題10分)某電商企業(yè)收集了不同季節(jié)的商品銷售數(shù)據(jù)、用戶搜索趨勢(shì)、市場(chǎng)競(jìng)爭(zhēng)情況等。研究怎樣利用這些

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論