難點詳解河南淮陽縣7年級數(shù)學下冊第四章三角形同步練習試卷(含答案詳解)_第1頁
難點詳解河南淮陽縣7年級數(shù)學下冊第四章三角形同步練習試卷(含答案詳解)_第2頁
難點詳解河南淮陽縣7年級數(shù)學下冊第四章三角形同步練習試卷(含答案詳解)_第3頁
難點詳解河南淮陽縣7年級數(shù)學下冊第四章三角形同步練習試卷(含答案詳解)_第4頁
難點詳解河南淮陽縣7年級數(shù)學下冊第四章三角形同步練習試卷(含答案詳解)_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南淮陽縣7年級數(shù)學下冊第四章三角形同步練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,在△ABC中,AB=AC,點D是BC的中點,那么圖中的全等三角形的對數(shù)是()A.0 B.1 C.2 D.32、如圖,已知為的外角,,,那么的度數(shù)是()A.30° B.40° C.50° D.60°3、如圖,BD是△ABC的中線,AB=6,BC=4,△ABD和△BCD的周長差為()A.2 B.4 C.6 D.104、如圖,工人師傅在安裝木制門框時,為防止變形,常常釘上兩條斜拉的木條,這樣做的數(shù)學依據(jù)是()A.兩點確定一條直線B.兩點之間,線段最短C.三角形具有穩(wěn)定性D.三角形的任意兩邊之和大于第三邊5、如圖,在△ABC中,BC邊上的高為()A.AD B.BE C.BF D.CG6、如圖,在5×5的正方形網(wǎng)格中,△ABC的三個頂點都在格點上,則與△ABC有一條公共邊且全等(不與△ABC重合)的格點三角形(頂點都在格點上的三角形)共有()A.3個 B.4個 C.5個 D.6個7、BP是∠ABC的平分線,CP是∠ACB的鄰補角的平分線,∠ABP=20°,∠ACP=50°,則∠P=()A.30° B.40° C.50° D.60°8、如圖,已知AB=AD,CB=CD,可得△ABC≌△ADC,則判斷的依據(jù)是()A.SSS B.SAS C.ASA D.HL9、一個三角形的兩邊長分別為5和2,若該三角形的第三邊的長為偶數(shù),則該三角形的第三邊的長為()A.6 B.8 C.6或8 D.4或610、已知三角形的兩邊長分別為2cm和3cm,則第三邊長可能是()A.6cm B.5cm C.3cm D.1cm第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,于點D,于點E,BD,CE交于點F,請你添加一個條件:______(只添加一個即可),使得≌2、如圖,∠AOB=90°,OA=OB,直線l經(jīng)過點O,分別過A、B兩點作AC⊥l于點C,BD⊥l于點D,若AC=5,BD=3,則CD=_______.3、如圖,在Rt△ABC中,CD是斜邊AB上的中線,若AB=10,則CD=_______.4、如圖,在中,,一條線段,P,Q兩點分別在線段和的垂線上移動,若以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,則的長為_________.5、如圖,在△ABC中,點D為BC邊延長線上一點,若∠ACD=75°,∠A=45°,則∠B的度數(shù)為__________.6、如圖,點C是線段AB的中點,.請你只添加一個條件,使得≌.(1)你添加的條件是______;(要求:不再添加輔助線,只需填一個答案即可)(2)依據(jù)所添條件,判定與全等的理由是______.7、如圖,A,B在一水池的兩側,,,AC,BD交于點E,,若,則水池寬______m.8、如圖,已知AB=12m,CA⊥AB于點A,DB⊥AB于點B,且AC=4m,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m.若P,Q兩點同時出發(fā),運動_____分鐘后,△CAP與△PQB全等.9、如圖,三角形ABC的面積為1,,E為AC的中點,AD與BE相交于P,那么四邊形PDCE的面積為______.10、如圖,AB,CD相交于點O,,請你補充一個條件,使得,你補充的條件是______.三、解答題(6小題,每小題10分,共計60分)1、已知,如圖,三角形ABC是等腰直角三角形,∠ACB=90°,F(xiàn)是AB的中點,直線l經(jīng)過點C,分別過點A、B作l的垂線,即AD⊥CE,BE⊥CE,(1)如圖1,當CE位于點F的右側時,求證:△ADC≌△CEB;(2)如圖2,當CE位于點F的左側時,求證:ED=BE﹣AD;(3)如圖3,當CE在△ABC的外部時,試猜想ED、AD、BE之間的數(shù)量關系,并證明你的猜想.2、已知的三邊長分別為a,b,c.若a,b,c滿足,試判斷的形狀.3、已知:如圖,AD,BE相交于點O,AB⊥BE,DE⊥AD,垂足分別為B,D,OA=OE.求證:△ABO≌△EDO.4、如圖,AB是⊙O的直徑,CD是⊙O中任意一條弦,求證:AB≥CD.5、如圖,ABCF,E為DF的中點,AB=20,CF=15,求BD的長度.6、將一副三角板中的兩塊直角三角尺的直角頂點C按如圖1方式疊放在一起,其中,.(1)若,則的度數(shù)為_______;(2)直接寫出與的數(shù)量關系:_________;(3)直接寫出與的數(shù)量關系:__________;(4)如圖2,當且點E在直線的上方時,將三角尺固定不動,改變三角尺的位置,但始終保持兩個三角尺的頂點C重合,這兩塊三角尺是否存在一組邊互相平行?請直接寫出角度所有可能的值___________.-參考答案-一、單選題1、D【分析】先利用SSS證明△ABD≌△ACD,再利用SAS證明△ABE≌△ACE,最后利用SSS證明△BDE≌△CDE即可.【詳解】∵AB=AC,點D是BC的中點,∴AB=AC,BD=CD,AD=AD,∴△ABD≌△ACD,∴∠BAE=∠CAE,∵AB=AC,AE=AE,∴△ABE≌△ACE,∴BE=CE,∵BD=CD,DE=DE,∴△BDE≌△CDE,故選D.【點睛】本題考查了三角形全等的判定和性質,結合圖形特點,選擇合適的判定方法是解題的關鍵.2、B【分析】根據(jù)三角形的外角性質解答即可.【詳解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD?∠B=60°?20°=40°,故選:B.【點睛】此題考查三角形的外角性質,關鍵是根據(jù)三角形外角性質解答.3、A【分析】根據(jù)題意可得,,△ABD和△BCD的周長差為線段的差,即可求解.【詳解】解:根據(jù)題意可得,△ABD的周長為,△BCD的周長為△ABD和△BCD的周長差為故選:A【點睛】本題考查了三角形中線的性質及三角形周長的計算,熟練掌握三角形中線的性質是解答本題的關鍵.4、C【分析】根據(jù)三角形具有穩(wěn)定性進行求解即可.【詳解】解:工人師傅在安裝木制門框時,為防止變形,常常釘上兩條斜拉的木條,這樣做的數(shù)學依據(jù)是三角形具有穩(wěn)定性,故選C.【點睛】本題主要考查了三角形的穩(wěn)定性,熟知三角形具有穩(wěn)定性是解題的關鍵.5、A【分析】根據(jù)三角形的高線的定義解答.【詳解】解:根據(jù)三角形的高的定義,AD為△ABC中BC邊上的高.故選:A.【點睛】本題主要考查了三角形的高的定義:從三角形的一個頂點向它的對邊作垂線,垂足與頂點之間的線段叫做三角形的高,熟記概念是解題的關鍵.6、C【分析】根據(jù)全等三角形的性質及判定在圖中作出符合條件的三角形即可得出結果.【詳解】解:如圖所示:與BC邊重合且與全等的三角形有:,,,與AC邊重合且與全等的三角形有:,與AB邊重合且與全等的三角形有:,共有5個三角形,故選:C.【點睛】題目主要考查全等三角形的判定和性質,熟練掌握全等三角形的判定和性質定理是解題關鍵.7、A【分析】根據(jù)角平分線的定義以及一個三角形的外角等于與它不相鄰的兩個內角和,可求出∠P的度數(shù).【詳解】∵BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM?∠CBP=50°?20°=30°,故選:A.【點睛】本題考查三角形外角性質以及角平分線的定義,解題時注意:一個三角形的外角等于與它不相鄰的兩個內角的和.8、A【分析】由利用邊邊邊公理證明即可.【詳解】解:故選A【點睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明三角形全等”是解本題的關鍵.9、D【分析】根據(jù)三角形兩邊之和大于第三邊確定第三邊的范圍,根據(jù)題意計算即可.【詳解】解:設三角形的第三邊長為x,則5﹣2<x<5+2,即3<x<7,∵三角形的第三邊是偶數(shù),∴x=4或6,故選:D.【點睛】本題考查了三角形三邊關系,在一個三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.10、C【分析】根據(jù)在三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.即可求解.【詳解】解:設第三邊長為xcm,根據(jù)三角形的三邊關系可得:3-2<x<3+2,解得:1<x<5,只有C選項在范圍內.故選:C.【點睛】本題考查了三角形的三邊關系,關鍵是掌握第三邊的范圍是:大于已知的兩邊的差,而小于兩邊的和.二、填空題1、(答案不唯一)【分析】由題意依據(jù)全等三角形的判定條件進行分析即可得出答案.【詳解】解:∵于點D,于點E,∴,∵,∴當時,≌(AAS).故答案為:.【點睛】本題考查三角形全等的判定方法;判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時注意:AAA、SSA不能判定兩個三角形全等,不能添加,根據(jù)已知結合圖形及判定方法選擇條件是正確解答本題的關鍵.2、2【分析】首先根據(jù)同角的余角相等得到∠A=∠BOD,然后利用AAS證明△ACO≌△ODB,根據(jù)全等三角形對應邊相等得出AC=OD=5,OC=BD=3,根據(jù)線段之間的數(shù)量關系即可求出CD的長度.【詳解】解:∵AC⊥l于點C,BD⊥l于點D,∴∠ACO=∠ODB=90°,∵∠AOB=90°,∴∠A=90°﹣∠AOC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴AC=OD=5,OC=BD=3,∴CD=OD﹣OC=5﹣3=2,故答案為:2.【點睛】此題考查了全等三角形的性質和判定,同角的余角相等,解題的關鍵是根據(jù)題意證明△ACO≌△ODB.3、5【分析】作交CD的延長線于E點,首先根據(jù)ASA證明,得到,,然后根據(jù)證明,得到,即可求出CD的長度.【詳解】解:如圖所示,作交CD的延長線于E點,∵,∴,∵CD是斜邊AB上的中線,∴,∴在和中,∴,∴,,∵,,∴,∴在和中,∴,∴,∴.故答案為:5.【點睛】本題考查了直角三角形的性質,全等三角形的性質和判定,作出輔助線構造全等三角形是解題的關鍵.4、6cm或12cm【分析】先根據(jù)題意得到∠BCA=∠PAQ=90°,則以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,由此利用全等三角形的性質求解即可.【詳解】解:∵AX是AC的垂線,∴∠BCA=∠PAQ=90°,∴以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,當△ACB≌△QAP,∴;當△ACB≌△PAQ,∴,故答案為:6cm或12cm.【點睛】本題主要考查了全等三角形的性質,熟知全等三角形的性質是解題的關鍵.5、30°【分析】根據(jù)三角形的外角的性質,即可求解.【詳解】解:∵,∴,∵∠ACD=75°,∠A=45°,∴.故答案為:30°【點睛】本題主要考查了三角形的外角性質,熟練掌握三角形的一個外角等于與它不相鄰的兩個內角的和是解題的關鍵.6、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一)SAS【分析】(1)由已知條件可得兩個三角形有一組對應邊相等,一組對應角相等,根據(jù)三角形全等的判定方法添加條件即可;(2)根據(jù)添加的條件,寫出判斷的理由即可.【詳解】解:(1)添加的條件是:AD=CE(或∠D=∠E或∠ACD=∠B)故答案為:AD=CE(或∠D=∠E或∠ACD=∠B)(2)若添加:AD=CE∵點C是線段AB的中點,∴AC=BC∵∴∴≌(SAS)故答案為:SAS【點睛】本題主要考查了添加條件判斷三角形全等,熟練掌握全等三角形的判斷方法是解答本題的關鍵.7、80【分析】根據(jù)“”證明即可得出.【詳解】解:∵,,∴,在和中,,∴,∵,∴,故答案為:.【點睛】本題考查了全等三角形的實際應用,熟練掌握全等三角形的判定定理以及性質定理是解本題的關鍵.8、4【分析】根據(jù)題意CA⊥AB,DB⊥AB,則,則分或兩種情況討論,根據(jù)路程等于速度乘以時間求得的長,根據(jù)全等列出一元一次方程解方程求解即可【詳解】解:CA⊥AB,DB⊥AB,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m,設運動時間為,且AC=4m,,當時則,即,解得當時,則,即,解得且不符合題意,故舍去綜上所述即分鐘后,△CAP與△PQB全等.故答案為:【點睛】本題考查了三角形全等的性質,根據(jù)全等的性質列出方程是解題的關鍵.9、【分析】連接CP.設△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點,得△BDP的面積是2y,△APE的面積是x,進而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點,∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關系.等高的兩個三角形的面積比等于它們的底的比;等底的兩個三角形的面積比等于它們的高的比.10、(答案不唯一)【分析】在與中,已經(jīng)有條件:所以補充可以利用證明兩個三角形全等.【詳解】解:在與中,所以補充:故答案為:【點睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明兩個三角形全等”是解本題的關鍵.三、解答題1、(1)見解析;(2)見解析;(3)ED=AD+BE.證明見解析【分析】(1)利用同角的余角相等得出∠CAD=∠BCE,進而根據(jù)AAS證明△ADC≌△CEB;(2)根據(jù)AAS證明△ADC≌△CEB后,得其對應邊相等,進而得到ED=BE-AD;(3)根據(jù)AAS證明△ADC≌△CEB后,得DC=BE,AD=CE,又有ED=CE+DC,進而得到ED=AD+BE.【詳解】(1)證明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC與△CEB中,∴△ADC≌△CEB(AAS);(2)證明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC與△CEB中,∴△ADC≌△CEB(AAS).∴DC=BE,AD=CE.又∵ED=CD-CE,∴ED=BE-AD;(3)ED=AD+BE.證明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC與△CEB中,∴△ADC≌△CEB(AAS).∴DC=BE,AD=CE.又∵ED=CE+DC,∴ED=AD+BE.【點睛】本題考查了全等三角形的判定和性質;利用全等三角形的對應邊相等進行等量交換,證明線段之間的數(shù)量關系,這是一種很重要的方法,注意掌握.2、的形狀是等邊三角形.【分析】利用平方數(shù)的非負性,求解a,b,c的關系,進而判斷.【詳解】解:∵,∴,∴a=b=c,∴是等邊三角形.【點睛】本題主要是考查了三角形的分類,熟練掌握各類三角形的特點,例如三邊相等為等邊三角形,含的三角形為直角三角形等,這是解決此類題的關鍵.3、見解析【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論