版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
青島版8年級數(shù)學下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、已知點M(a,b)在第二象限內(nèi),且,則該點關(guān)于原點對稱點的坐標是(
)A.(-2,1) B.(-1,2) C.(2,-1) D.(1,-2)2、甲、乙兩汽車從城出發(fā)前往城,在整個行程中,汽車離開城的距離與時間的對應(yīng)關(guān)系如圖所示,下列結(jié)論錯誤的是(
)A.,兩城相距 B.行程中甲、乙兩車的速度比為3:5C.乙車于7:20追上甲車 D.9:00時,甲、乙兩車相距3、下列對△ABC的判斷,不正確的是(
)A.若∠A:∠B:∠C=1:2:3,則△ABC是直角三角形B.若AB:BC:CA=1:2:,則△ABC是直角三角形C.若AB=BC,∠A=60°,則△ABC是等邊三角形D.若AB=BC,∠C=50°,則∠B=50°4、若是關(guān)于x的一元一次方程,則m的值為(
)A. B.3 C. D.15、一個直角三角形的兩直角邊長分別為3,4,則第三邊長是(
)A.3 B.4 C.5 D.5或6、直線與y軸交于點A,與x軸交于點B,直線與直線關(guān)于x軸對稱且過點(2,-1),則△ABO的面積為(
)A.8 B.1 C.2 D.47、下列計算正確的是()A. B. C. D.8、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是(
)A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖是小明的身高隨年齡變化的圖像,那么小明自16歲到18歲這兩年間身高一共增高了約___________cm.2、如圖,在直角中,,將繞點O逆時針旋轉(zhuǎn)得到,則_______°.3、如圖,是等邊三角形,M是正方形ABCD對角線BD(不含B點)上任意一點,,(點N在AB的左側(cè)),當AM+BM+CM的最小值為時,正方形的邊長為______.4、正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖所示放置,點A1,A2,A3,和點C1,C2,C3,…,分別在直線y=kx+b(k>0)和x軸上,已知點B1,B2,B3,B4的坐標分別為(1,1),(3,2),(7,4),(15,8),則Bn的坐標為_____5、的平方根為_____,的絕對值為____.6、已知關(guān)于x的不等式組為,則這個不等式組的解集為_____.7、如圖,四邊形ABCD和四邊形OMNP都是邊長為4的正方形,點O是正方形ABCD對角線的交點,正方形OMNP繞點O旋轉(zhuǎn)過程中分別交AB,BC于點E,F(xiàn),則四邊形OEBF的面積為_______.三、解答題(7小題,每小題10分,共計70分)1、如圖,已知△ABC是銳角三角形(AC<AB)(1)①請在圖1中用圓規(guī)和無刻度的直尺作出點O,使O到△ABC三邊距離相等;(不寫作法,保留作圖痕跡)②在①的條件下,若AB=15,AC=13,BC=14,則△ABC中BC邊上的高=______,O到△ABC三邊距離=______.(2)在△ABC中,若點P在△ABC內(nèi)部(含邊界)且滿足PC≤PB≤PA,請在圖2中用圓規(guī)和無刻度的直尺作出所有符合條件的點P組成的區(qū)域(用陰影表示).(不寫作法,保留作圖痕跡)2、如果一個三角形能被一條線段分割成兩個等腰三角形,那么稱這條線段為這個三角形的雙腰分割線,稱這個三角形為雙腰三角形.(1)如圖1,三角形內(nèi)角分別為80°、25°、75°,請你畫出這個三角形的雙腰分割線,并標出每個等腰三角形各角的度數(shù).(2)如圖2,△ABC中,∠B=2∠C,線段AC的垂直平分線交AC于點E,交BC于點D.求證:AD是△ABC的一條雙腰分割線.(3)如圖3,已知△ABC中,∠B=64°,AD是三角形ABC的雙腰分割線,且AB=AD.①求∠C的度數(shù).②若AB=3,AC=5,求BC的長.3、4、如圖1,直線yx+m與坐標軸交于點A,B,點C(a,0)在線段OA上由O向A運動,CD⊥OA交AB于D,△A′DC與△ADC關(guān)于直線CD成軸對稱,設(shè)△A′DC與△AOB重合部分的面積為S,S關(guān)于a的圖象如圖2所示,部分被污染.(1)寫出圖1中的點A的坐標,并求出m的值.(2)求點A′與坐標原點O重合時,點D的坐標.(3)寫出當點A′在線段AO上時,S關(guān)于a的函數(shù)表達式.(4)求S時,所有符合條件的a的值.5、我校為了豐富校園活動,計劃購買乒乓球拍和羽毛球拍共100副,其中乒乓球拍每副50元,羽毛球拍每副100元,(1)若購買兩種球拍剛好用去8000元,則購買兩種球拍各多少副?(2)若購買羽毛球拍的數(shù)量不少于乒乓球拍的數(shù)量,請設(shè)計一種購買方案使所需總費用最低,并求出該購買方案所需總費用.6、如圖1,在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分線,DE⊥AB于E.(1)發(fā)現(xiàn):如圖1,連接CE,則△BCE的形狀是_______________,∠CDB=____________°;(2)探索:如圖2,點P為線段AC上一個動點,當點P在CD之間運動時,連接BP,作∠BPQ=60°,PQ交射線DE于Q,連接BQ,即△BPQ是等邊三角形;思路:在線段BD上截取點H,使DH=DP,得等邊△DPH,由∠DPQ=∠HPB,PD=PH,∠QDP=∠BHP,易證△PDQ≌△PHB(ASA),得PQ=PB,即△BPQ是等邊三角形.試判斷線段DQ、DP、AD之間的關(guān)系,并說明理由;(3)類比:如圖3,當點P在AD之間運動時連接BP,作∠BPQ=60°,PQ交射線DE于Q,連接BQ.①試判斷△BPQ的形狀,并說明理由;②若AD=2,設(shè)AP=x,DQ=y,請直接寫出y與x之間的函數(shù)關(guān)系式.7、濟南某社區(qū)為倡導健康生活,推進全民健身,去年購進A,B兩種健身器材若干件.經(jīng)了解,B種健身器材的單價是A種健身器材的1.5倍,用6000元購買A種健身器材比用3600元購買B種健身器材多15件.(1)A,B兩種健身器材的單價分別是多少元?(2)若今年兩種健身器材的單價和去年保持不變,該社區(qū)計劃再購進A,B兩種健身器材共60件,且B種健身器材的數(shù)量不少于A種健身器材的4倍,請你確定一種購買方案使得購進A,B兩種健身器材的費用最少.-參考答案-一、單選題1、D【解析】【分析】根據(jù)M點所在的象限及兩坐標的絕對值可確定點M的坐標,再根據(jù)兩個點關(guān)于原點對稱的坐標特征:橫坐標、縱坐標分別互為相反數(shù),即可確定答案.【詳解】∵M點在第二象限∴a<0,b>0∵∴a=?1,b=2即M(?1,2)所以M點關(guān)于原點對稱的點的坐標為(1,?2)故選:D【點睛】本題考查了兩點關(guān)于原點對稱的坐標特征,點所在象限的坐標特征,掌握這兩個特征是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)整個行程中,汽車離開A城的距離y與時刻t的對應(yīng)關(guān)系,即可得到正確結(jié)論.【詳解】解:A、由題可得,A,B兩城相距300千米,故A結(jié)論正確,不符合題意;B、甲車的平均速度為:300÷(10-5)=60(千米/時),乙車的平均速度為:300÷(9-6)=100(千米/時),所以行程中甲、乙兩車的速度比為3:5,故B結(jié)論正確,不符合題意;C、設(shè)乙出發(fā)x小時后追上了甲,則100x=60(x+1),解得x=1.5,即乙車于7:30追上甲車,故C結(jié)論錯誤,符合題意;D、9:00時甲車所走路程為:60×(9-5)=240(km),300-240=60(km),即9:00時,甲、乙兩車相距60km,故D結(jié)論正確,不符合題意.故選:C.【點睛】此題主要考查了看函數(shù)圖象,以及一次函數(shù)的應(yīng)用,關(guān)鍵是正確從函數(shù)圖象中得到正確的信息.3、D【解析】【分析】根據(jù)等腰三角形,等邊三角形,直角三角形的判定以及三角形的內(nèi)角和定理即可作出判斷.【詳解】解:A.若∠A:∠B:∠C=1:2:3,則∠A=30°,∠B=60°,∠C=90°,所以△ABC是直角三角形,故此選項正確,不符合題意;B.若AB:BC:CA=1:2:,則12+()2=22,那么這個三角形是直角三角形,故此選項正確,不符合題意;C.若AB=BC,∠A=60°,則∠A=∠C=60°,∠B=60°,所以△ABC是等邊三角形,故此選項正確,不符合題意;D.若AB=BC,∠C=50°,則∠A=∠C=50°,∠B=80°,故此選項錯誤,符合題意.故選:D.【點睛】本題考查了等腰三角形的判定、直角三角形的判定以及等邊三角形的判定.根據(jù)已知條件解出三角形中的角是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)一元一次方程的定義,可列方程和不等式,即可求m的值.【詳解】解:∵是關(guān)于x的一元一次方程,∴,解得,故選:A.【點睛】本題考查了一元一次方程的定義,絕對值,利用一元一次方程的定義解決問題是本題的關(guān)鍵.5、C【解析】【分析】根據(jù)題意已知兩直角邊長分別為3,4,勾股定理即可求得第三邊即斜邊的長【詳解】解:一個直角三角形的兩直角邊長分別為3,4,第三邊長是故選C【點睛】本題考查了勾股定理,掌握勾股定理是解題的關(guān)鍵.6、D【解析】【分析】先根據(jù)軸對稱可得直線經(jīng)過點,再利用待定系數(shù)法可得直線的解析式,從而可得點的坐標,然后利用三角形的面積公式即可得.【詳解】解:直線與直線關(guān)于軸對稱且過點,直線經(jīng)過點,將點代入直線得:,解得,則直線的解析式為,當時,,即,當時,,解得,即,則的面積為,故選:D.【點睛】本題考查了點坐標與軸對稱、求一次函數(shù)的解析式等知識,熟練掌握待定系數(shù)法是解題關(guān)鍵.7、D【解析】【分析】利用二次根式的運算法則計算.A.應(yīng)是合并同類二次根式,計算錯誤;B.這兩個數(shù)不是同類二次根式不能加減;C.計算錯誤;D.先把分母有理化再計算.【詳解】解:A、合并同類二次根式應(yīng)是,故選項錯誤,不符合題意;;B、不是同類二次根式,不能合并,故選項錯誤,不符合題意;;C、要注意根式與根式相乘,應(yīng)等于3,故選項錯誤,不符合題意;;D、,故選項正確,符合題意;;故選:D.【點睛】本題考查了二次根式的運算:解題的關(guān)鍵是先把各二次根式化簡為最簡二次根式,然后進行二次根式的運算,再合并即可.8、C【解析】【詳解】A、中心對稱圖形,不符合題意;B、軸對稱圖形,不符合題意;C、軸對稱圖形,又是中心對稱圖形,符合題意;D、軸對稱圖形,不符合題意;故點C.【點睛】本題考查軸對稱圖形與中心對稱圖形的定義,軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫軸對稱圖形;中心對稱圖形的概念:在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與原來的圖形重合,這個圖形稱為中心對稱圖形.熟悉軸對稱圖形和中心對稱圖形的概念是本題的解題關(guān)鍵.二、填空題1、【解析】【分析】先求解時對應(yīng)的一次函數(shù)的解析式,可得時的函數(shù)值,再求解時對應(yīng)的函數(shù)解析式,可得時的函數(shù)值,從而可得答案.【詳解】解:當時,設(shè)函數(shù)解析式為:解得:所以一次函數(shù)為:當時,當時,設(shè)函數(shù)解析式為:所以一次函數(shù)的解析式為:當時,(cm),故答案為:15【點睛】本題考查的是利用待定系數(shù)法求解一次函數(shù)的解析式,已知自變量的值求解函數(shù)值,掌握“待定系數(shù)法求解解析式的步驟”是解本題的關(guān)鍵.2、70【解析】【分析】直接根據(jù)圖形旋轉(zhuǎn)的性質(zhì)進行解答即可.【詳解】解:∵將繞點O逆時針旋轉(zhuǎn)100°得到,∴,∵,∴.故答案為:70.【點睛】本題考查的是旋轉(zhuǎn)的性質(zhì),熟知圖形旋轉(zhuǎn)前后對應(yīng)邊、對應(yīng)角均相等的性質(zhì)是解答此題的關(guān)鍵.3、【解析】【分析】首先通過SAS判定,得出,因為,,得出是等邊三角形,AM+BM+CM=EN+MN+CM,而且為最小值,我們可以得出EC=,作輔助線,過點E作交CB的延長線于F,由題意求出,設(shè)正方形的邊長為x,在中,根據(jù)勾股定理求得正方形的邊長為.【詳解】∵為正三角形,∴,∴∵BD是正方形ABCD的對角線,∴∴.在和中,∴(SAS)∴在中,又∵,∴為等邊三角形,∴.∵AM+BM+CM最小值為.∴EN+MN+CM的最小值為即CE=.過點E作交CB的延長線于F,可得.設(shè)正方形的邊長為x,則BF=,.在,∵,∴解得(負值舍去).∴正方形的邊長為.故答案為:.【點睛】本題考查了等邊三角形和正方形邊相等的性質(zhì),全等三角形的判定,靈活使用輔助線,掌握直角三角的性質(zhì),熟練運用勾股定理是解題的關(guān)鍵.4、(2n-1,2n-1)【解析】【分析】由圖和條件可知A1(0,1)A2(1,2)A3(3,4),由此可以求出直線為y=x+1,Bn的橫坐標為An+1的橫坐標,縱坐標為An的縱坐標,又An的橫坐標數(shù)列為An=2n-1-1,所以縱坐標為(2n-1),然后就可以求出Bn的坐標.【詳解】解:∵點B1(1,1),B2(3,2),∴A1(0,1),A2(1,2),A3(3,4),∵直線y=kx+b(k>0)經(jīng)過A1(0,1),A2(1,2),則,解得∴直線y=kx+b(k>0)為y=x+1,∴Bn的橫坐標為An+1的橫坐標,縱坐標為An的縱坐標,又An的橫坐標為2n-1-1,所以縱坐標為2n-1,∴Bn的坐標為(2n-1,2n-1).故答案為:(2n-1,2n-1).【點睛】本題主要考查函數(shù)圖象上點的坐標特征,解決這類問題首先要從簡單圖形入手,抓住隨著“編號”或“序號”增加時,后一個圖形與前一個圖形相比,在數(shù)量上增加(或倍數(shù))情況的變化,找出數(shù)量上的變化規(guī)律,從而推出一般性的結(jié)論.5、
【解析】【分析】先計算出的立方根,再根據(jù)平方根的定義進行求解;根據(jù)絕對值的定義進行求解.【詳解】解:①,的平方根是,的平方根是;②的絕對值是.故答案為:;.【點睛】本題了平方根和絕對值和立方根,理解平方根和絕對值的定義是解答關(guān)鍵.正數(shù)的平方根有兩個,它們互為相反數(shù),負數(shù)的絕對值是正數(shù).6、【解析】【分析】分別求出兩個不等式的解集,即可求解.【詳解】解:,解不等式①,得x≤﹣,解不等式②,得x,所以不等式組的解集是x,故答案為:x.【點睛】本題主要考查了解一元一次不等式組,熟練掌握解一元一次不等式組的基本方法是解題的關(guān)鍵.7、4【解析】【分析】根據(jù)正方形的性質(zhì)得到OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,推出∠BOE=∠COF,根據(jù)全等三角形的判定定理得到△BOE≌△COF(ASA),于是得到結(jié)論.【詳解】解:∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠BOE=90°,∴∠BOE=∠COF,在△BOE和△COF中,,∴△BOE≌△COF(ASA),∴S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD=×4×4=4,故答案為:4.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理是解題的關(guān)鍵.三、解答題1、(1)①見解析;②12,4(2)見解析【解析】【分析】(1)①作兩內(nèi)角的平分線,得交點O;②作邊上的高,設(shè),則,在中,,在中,根據(jù)勾股定理建立方程,求得,進而勾股定理求得,根據(jù)等面積法求O到△ABC三邊距離即可;(2)作的垂直平分線,根據(jù)滿足PC≤PB≤PA,由PB≤PA,點點離點更近,在的垂直平分線靠進點部分,由PC≤PB,點點離點更近,在垂直平分線靠進點的部分,以及與圍成部分,包括邊界.(1)①如圖所示,即為所求;②如圖所示,作邊上的高,AB=15,AC=13,BC=14,設(shè),則在中,在中,即解得由①可知到三邊距離相等,設(shè)到三邊距離為,則即解得故答案為:(2)滿足PC≤PB≤PA的點P組成的區(qū)域(用陰影表示),如圖所示.【點睛】本題考查了作角平分線,垂直平分線,勾股定理,掌握角平分線的性質(zhì)與垂直平分線的性質(zhì)是解題的關(guān)鍵.2、(1)見解析(2)見解析(3)①∠C=23°;②BC=【解析】【分析】(1)從三個頂點出發(fā)各作一條線段,根據(jù)等邊對等角,求出角度,看是否符合另一個三角形也是等腰三角形;(2)根據(jù)等腰三角形的判定和性質(zhì)求解可得.(3)①由AD是三角形ABC的雙腰分割線,且AB=AD.得AB=AD=CD,∠B=∠ADB=64°,從而求得∠C=∠CAD=∠ADB=32°;②過點A作AE⊥BC于點E,Rt△ABE中,AE2=AB2-BE2=32-x2,Rt△ACE中,AE2=52-(3+x)2,得32-x2=52-(3+x)2,解方程即可.(1)解:線段AD是△ABC的雙腰分割線,每個等腰三角形各角的度數(shù);(2)證明:∵線段AC的垂直平分線交AC于點E,∴AD=CD,∴△ADC是等腰三角形,∴∠C=∠DAC,∴∠ADB=∠C+∠DAC=2∠C,∵∠B=2∠C,∴∠B=∠ADB,∴AB=AD,∴△ABD是等腰三角形,∴AD是△ABC的一條雙腰分割線.(3)①∵AD是三角形ABC的雙腰分割線,且AB=AD.∴AB=AD=CD,∴∠B=∠ADB=64°,∵AD=CD,∴∠C=∠CAD=∠ADB=32°;②過點A作AE⊥BC于點E,∵AB=AD=CD=3,∴BE=DE,設(shè)BE為x,∵Rt△ABE中,AE2=AB2-BE2=32-x2,Rt△ACE中,AE2=52-(3+x)2,∴32-x2=52-(3+x)2,解得,x=,∴BC=×2+3=.【點睛】本題考查了作圖-應(yīng)用與設(shè)計作圖,解題的關(guān)鍵是掌握等腰三角形的判定和性質(zhì).3、(1)y=-2x+5(2)(0,2)(3)略4、(1)A(5,0);m=(2)D()(3)(4)a=或a=【解析】【分析】(1)根據(jù)圖2可確定點A坐標,再代入可求出的值;(2)根據(jù)對稱性質(zhì)可求出OC的長,從而可確定點D坐標;(3)當在線段OA上時,≤a≤5,S即為△ACD的面積,由三角形面積公式求解即可;(4)分點落在點O的左側(cè)和右側(cè)兩種情況討論求解即可.(1)由圖2可知,當時,∴A(5,0)將(5,0)代入,得解之得,m=∴A(5,0);m=(2)∵△A′DC與△ADC關(guān)于直線CD成軸對稱,∴與點A關(guān)于點C對稱,且點A′與坐標原點O重合∴∴又軸,由(1)得∴當時,∴D()(3)當A’在線段OA上時,≤a≤5,S即為△ACD的面積.∵OC=a,∴AC=5-a,,∴,即(4)①當落在點O的左側(cè)時,此時△A′DC與△AOB相交的圖形為梯形,如圖,D交y軸于點E,∵∴又∵∴∴∴當時,∴∴,設(shè)的解析式為,將點、D的坐標代入得,解得,∴當時,∴∴當時,解得,②當落在點O的右側(cè)時,如圖,即時,,解之得,,(舍去)∴綜上可知,當時,a=或a=【點睛】本題主要考查了一次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了面積法,注意數(shù)形結(jié)合思想的應(yīng)用,,根據(jù)題意畫出符合題意的圖形是解答本題的關(guān)鍵.5、(1)購買乒乓球40副,羽毛球60副;(2)購買乒乓球50副,羽毛球50副時所需總費用最低,該購買方案所需總費用為7500元【解析】【分析】(1)設(shè)購買乒乓球a副,則購買羽毛球(100-a)副,根據(jù)購買兩張球拍剛好用去8000元列方程求解即可;(2)設(shè)購買乒乓球x副,則購買羽毛球(100-x)副,先根據(jù)題意求得x的取值范圍,再根據(jù)一次函數(shù)的增減性求解即可.(1)解:設(shè)購買乒乓球a副,則購買羽毛球(100-a)副,根據(jù)題意,得:50a+100(100-a)=8000,解得:a=40,100-40=60(副),答:購買乒乓球40副,羽毛球60副;(2)解:設(shè)購買乒乓球x副,則購買羽毛球(100-x)副,設(shè)總費用為W元,∵購買羽毛球拍的數(shù)量不少于乒乓球拍的數(shù)量,∴100-x≥x,解得:x≤50,設(shè)總費用為W元,根據(jù)題意,W=50x+100(100-x)=-50x+10000,∵-50<0,∴W隨x的增大而減小,∴當x=50時,W最小,最小值為-50×50+10000=7500元,答:購買乒乓球50副,羽毛球50副時所需總費用最低,該購買方案所需總費用為7500元.【點睛】本題考查一元一次方程的應(yīng)用、一元一次不等式的應(yīng)用、一次函數(shù)的應(yīng)用,理解題意,找準等量關(guān)系是解答的關(guān)系.6、(1)等邊三角形,60;(2)AD=DQ+DP,見解析;(3)①△BPQ是等邊三角形,見解析;②y=-x+4【解析】【分析】(1)根據(jù)直角三角形的兩銳角互余求得∠ABC=60°,再根據(jù)角平分線的定義求得∠ABD=∠CBD=∠A=30°,則AD=BD,根據(jù)等腰三角形的性質(zhì)證得AE=BE,再由直角三角形斜邊上的中線性質(zhì)得出CE=BE,根據(jù)等邊三角形的判定即可得出結(jié)論;(2)根據(jù)思路和全等三角形的性質(zhì)得出BH=DQ,結(jié)合AD=BD,BD=DH+BH即可解答;(3)延長BD至F,使DF=PD,連接PF,可證得△PDF是等邊三角形,則有PF=PD,∠F=∠PDF=∠DPF=60°,進而可得∠F=∠PDQ=60°,證明∠BPF=∠QPD,利用ASA證明△PBF≌△PQD,得出PB=PQ,BF=DQ,結(jié)合∠BPQ=60°和AD=BD即可得出①②的結(jié)論.(1)解:如圖1,∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分線,∴∠ABD=∠CBD=∠ABC=30°,∴∠ABD=∠A,∠CDB=90°-∠CBD=60°,∴AD=BD,又DE⊥AB,∴AE=BE=AB,又∠ACB=90°,∴CE=AB=BE,又∠ABC=60°,∴△BCE是等邊三角形,故答案為:等邊三角形,60;(2)解:AD=DQ+DP,理由為:在線段BD上截取點H,使DH=DP,如圖2,∵∠CDB=60°,∴△DPH為等邊三角形,∴DP=PH,∠DPH=∠DHP=60°,又∠BPQ=60°,∴∠DPQ+∠QPH=∠HPB+∠QPH=60°,∠BHP=120°,∴∠DPQ=∠HPB,∵∠A=30°,DE⊥AB,∴∠QDP=∠A+∠AED=30°+90°=120°,∴∠QDP=∠BHP,在△PDQ≌△PHB中,∴△PDQ≌△PHB(ASA),∴DQ=BH,PQ=PB,∵AD=BD,∠BPQ=60°,∴△BPQ為等邊三角形,AD=BD=BH+DH=DQ+DP,即AD=DQ+DP;(3)解:①△BPQ為等邊三角形,理由為:延長BD至F,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學校看臺維修改造工程施工技術(shù)方案
- 土釘專項施工方案
- 廠房斜屋面拆除施工方案
- 冷庫施工技術(shù)方案
- 主體結(jié)構(gòu)專項施工方案
- 2024年青海衛(wèi)生職業(yè)技術(shù)學院馬克思主義基本原理概論期末考試題附答案解析
- 2024年玉溪農(nóng)業(yè)職業(yè)技術(shù)學院馬克思主義基本原理概論期末考試題含答案解析(必刷)
- 2026年云南省思茅市單招職業(yè)適應(yīng)性測試模擬測試卷帶答案解析
- 2025年務(wù)川仡佬族苗族自治縣幼兒園教師招教考試備考題庫及答案解析(奪冠)
- 2024年通道侗族自治縣招教考試備考題庫帶答案解析(奪冠)
- 尼帕病毒病預防控制技術(shù)指南總結(jié)2026
- 2026屆大灣區(qū)普通高中畢業(yè)年級聯(lián)合上學期模擬考試(一)語文試題(含答案)(含解析)
- 初高中生物知識銜接課件
- 2026國家國防科技工業(yè)局所屬事業(yè)單位第一批招聘62人備考題庫及完整答案詳解一套
- 道路隔離護欄施工方案
- (2025年)軍隊文職考試面試真題及答案
- 新版-八年級上冊數(shù)學期末復習計算題15天沖刺練習(含答案)
- 2025智慧城市低空應(yīng)用人工智能安全白皮書
- 云南師大附中2026屆高三月考試卷(七)地理
- 通信管道施工質(zhì)量控制方案
- 邁瑞售后管理制度規(guī)范
評論
0/150
提交評論