難點解析京改版數(shù)學(xué)9年級上冊期末試卷附參考答案詳解(達標(biāo)題)_第1頁
難點解析京改版數(shù)學(xué)9年級上冊期末試卷附參考答案詳解(達標(biāo)題)_第2頁
難點解析京改版數(shù)學(xué)9年級上冊期末試卷附參考答案詳解(達標(biāo)題)_第3頁
難點解析京改版數(shù)學(xué)9年級上冊期末試卷附參考答案詳解(達標(biāo)題)_第4頁
難點解析京改版數(shù)學(xué)9年級上冊期末試卷附參考答案詳解(達標(biāo)題)_第5頁
已閱讀5頁,還剩36頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

京改版數(shù)學(xué)9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、關(guān)于函數(shù),下列說法:①函數(shù)的最小值為1;②函數(shù)圖象的對稱軸為直線x=3;③當(dāng)x≥0時,y隨x的增大而增大;④當(dāng)x≤0時,y隨x的增大而減小,其中正確的有()個.A.1 B.2 C.3 D.42、二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實數(shù)).其中結(jié)論正確的個數(shù)為(

)A.1個 B.2個 C.3個 D.4個3、如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,過點C作⊙O的切線,交AB的延長線于點D.設(shè)∠A=α,∠D=β,則()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°4、如圖,五邊形是⊙O的內(nèi)接正五邊形,則的度數(shù)為(

)A. B. C. D.5、對于拋物線,下列說法正確的是()A.拋物線開口向上B.當(dāng)時,y隨x增大而減小C.函數(shù)最小值為﹣2D.頂點坐標(biāo)為(1,﹣2)6、如圖,ABC是等邊三角形,點D、E分別在BC、AC上,且∠ADE=60°,AB=9,BD=3,則CE的長等于()A.1 B. C. D.2二、多選題(7小題,每小題2分,共計14分)1、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經(jīng)過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+172、如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為D,CD與AB的延長線交于點C,∠A=30°,則下列結(jié)論中正確的是()A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°3、下列用尺規(guī)等分圓周的說法中,正確的是(

)A.在圓上依次截取等于半徑的弦,就可以六等分圓B.作相互垂直的兩條直徑,就可以四等分圓C.按A的方法將圓六等分,六個等分點中三個不相鄰的點三等分圓D.按B的方法將圓四等分,再平分四條弧,就可以八等分圓周4、如圖,反比例函數(shù)與一次函數(shù)的圖象交于A,B兩點,一次函數(shù)的圖象經(jīng)過點A.下列結(jié)論正確的是(

)A.B.點B的坐標(biāo)為C.連接OB,則D.點C為y軸上一動點,當(dāng)△ABC的周長最小時,點C的坐標(biāo)是5、在△ABC中,∠A、∠B、∠C的對邊分別為a、b、c,且a=5,b=12,c=13,下面四個式子中正確的有()A.sinA= B.cosA= C.tanA= D.sinB=6、在直角坐標(biāo)系中,若三點A(1,﹣2),B(2,﹣2),C(2,0)中恰有兩點在拋物線y=ax2+bx﹣2(a>0且a,b均為常數(shù))的圖象上,則下列結(jié)論正確的是(

).A.拋物線的對稱軸是直線B.拋物線與x軸的交點坐標(biāo)是(﹣,0)和(2,0)C.當(dāng)t>時,關(guān)于x的一元二次方程ax2+bx﹣2=t有兩個不相等的實數(shù)根D.若P(m,n)和Q(m+4,h)都是拋物線上的點且n<0,則.7、下列四個命題中正確的是(

)A.與圓有公共點的直線是該圓的切線B.垂直于圓的半徑的直線是該圓的切線C.到圓心的距離等于半徑的直線是該圓的切線D.過圓直徑的端點,垂直于此直徑的直線是該圓的切線第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,已知是⊙O的直徑,且,弦,點是弧上的點,連接、,若,則的長為______.2、將拋物線向上平移()個單位長度,<k<,平移后的拋物線與雙曲線y=(x>0)交于點P(p,q),M(1+,n),則下列結(jié)論正確的是__________.(寫出所有正確結(jié)論的序號)①0<p<1-;

②1-<p<1;

③q<n;

④q>2k-k.3、若函數(shù)圖像與x軸的兩個交點坐標(biāo)為和,則__________.4、如圖,小亮為了測量校園里教學(xué)樓AB的高度,將測角儀CD豎直放置在與教學(xué)樓水平距離為18m的地面上,若測角儀的高度為I.5m,測得教學(xué)樓的頂部A處的仰角為30°,則教學(xué)樓的高度是____.5、如圖,已知DC為∠ACB的平分線,DE∥BC.若AD=8,BD=10,BC=15,求EC的長=_____.6、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,BC的中點為D,將△ABC繞點C順時針旋轉(zhuǎn)任意一個角度得到△FEC,EF的中點為G,連接DG,在旋轉(zhuǎn)過程中,DG的最大值是________7、已知拋物線與x軸的一個交點為,則代數(shù)式的值為______.四、解答題(6小題,每小題10分,共計60分)1、(1)方法導(dǎo)引:問題:如圖1,等邊三角形的邊長為6,點是和的角平分線交點,,繞點任意旋轉(zhuǎn),分別交的兩邊于,兩點.求四邊形面積.討論:①小明:在旋轉(zhuǎn)過程中,當(dāng)經(jīng)過點時,一定經(jīng)過點.②小穎:小明的分析有道理,這樣我們就可以利用“”證出.③小飛:因為,所以只要算出的面積就得出了四邊形的面積.老師:同學(xué)們的思路很清晰,也很正確.在分析和解決問題時,我們經(jīng)常會借用特例作輔助線來解決一般問題:請你按照討論的思路,直接寫出四邊形的面積:________.(2)應(yīng)用方法:①特例:如圖2,的頂點在等邊三角形的邊上,,,邊于點,于點,求的面積.②探究:如圖3,已知,頂點在等邊三角形的邊上,,,記的面積為,的面積為,求的值.③應(yīng)用:如圖4,已知,頂點在等邊三角形的邊的延長線上,,,記的面積為,的面積為,請直接寫出與的關(guān)系式.

2、如圖,已知拋物線的頂點坐標(biāo)為M,與x軸相交于A,B兩點(點B在點A的右側(cè)),與y軸相交于點C.(1)用配方法將拋物線的解析式化為頂點式:(),并指出頂點M的坐標(biāo);(2)在拋物線的對稱軸上找點R,使得CR+AR的值最小,并求出其最小值和點R的坐標(biāo);(3)以AB為直徑作⊙N交拋物線于點P(點P在對稱軸的左側(cè)),求證:直線MP是⊙N的切線.3、在矩形中,于點,點是邊上一點.(1)若平分,交于點,PF⊥BD,如圖(1),證明四邊形是菱形;(2)若,如圖(2),求證:.4、如圖,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,點O在射線AC上(點O不與點A重合),垂足為D,以點O為圓心,分別交射線AC于E、F兩點,設(shè)OD=x.(1)如圖1,當(dāng)點O為AC邊的中點時,求x的值;(2)如圖2,當(dāng)點O與點C重合時,連接DF;求弦DF的長;(3)當(dāng)半圓O與BC無交點時,直接寫出x的取值范圍.5、已知點P(2,2)在反比例函數(shù)y=(k≠0)的圖象上.(1)當(dāng)x=-3時,求y的值;(2)當(dāng)1<x<3時,求y的取值范圍.6、五一期間,小明跟父母去烏鎮(zhèn)旅游,欣賞烏鎮(zhèn)水鄉(xiāng)的美景.如圖,當(dāng)小明走到烏鎮(zhèn)古橋的C處時,發(fā)現(xiàn)遠處有一瞍船勻速行駛過來,當(dāng)船行駛到A處時,小明測得船頭的俯角為30°,同時小明開始計時,船在航行過小明所在的橋之后,繼續(xù)向前航行到達B處,此時測得船尾的俯角為45°;從小明開始計時到船行駛至B處,共用時15min;已知小明所在位置距離水面6m,船長3m,船到水面的距離忽略不計,請你幫助小明計算一下船的航行速度(結(jié)果保留根號)-參考答案-一、單選題1、B【解析】【分析】根據(jù)所給函數(shù)的頂點式得出函數(shù)圖象的性質(zhì)從而判斷選項的正確性.【詳解】解:∵,∴該函數(shù)圖象開口向上,有最小值1,故①正確;函數(shù)圖象的對稱軸為直線,故②錯誤;當(dāng)x≥0時,y隨x的增大而增大,故③正確;當(dāng)x≤﹣3時,y隨x的增大而減小,當(dāng)﹣3≤x≤0時,y隨x的增大而增大,故④錯誤.故選:B.【考點】本題考查二次函數(shù)的性質(zhì),解題的關(guān)鍵是能夠根據(jù)函數(shù)解析式分析出函數(shù)圖象的性質(zhì).2、C【解析】【分析】①由拋物線開口方向得到,對稱軸在軸右側(cè),得到與異號,又拋物線與軸正半軸相交,得到,可得出,選項①錯誤;②把代入中得,所以②正確;③由時對應(yīng)的函數(shù)值,可得出,得到,由,,,得到,選項③正確;④由對稱軸為直線,即時,有最小值,可得結(jié)論,即可得到④正確.【詳解】解:①∵拋物線開口向上,∴,∵拋物線的對稱軸在軸右側(cè),∴,∵拋物線與軸交于負(fù)半軸,∴,∴,①錯誤;②當(dāng)時,,∴,∵,∴,把代入中得,所以②正確;③當(dāng)時,,∴,∴,∵,,,∴,即,所以③正確;④∵拋物線的對稱軸為直線,∴時,函數(shù)的最小值為,∴,即,所以④正確.故選C.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項系數(shù)決定拋物線的開口方向和大?。?dāng)時,拋物線向上開口;當(dāng)時,拋物線向下開口;一次項系數(shù)和二次項系數(shù)共同決定對稱軸的位置:當(dāng)與同號時,對稱軸在軸左;當(dāng)與異號時,對稱軸在軸右.常數(shù)項決定拋物線與軸交點:拋物線與軸交于.拋物線與軸交點個數(shù)由判別式確定:時,拋物線與軸有2個交點;時,拋物線與軸有1個交點;時,拋物線與軸沒有交點.3、C【解析】【分析】連接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切線,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【詳解】連接OC,如圖,∵⊙O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故選:C.【考點】本題考查圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì),掌握圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì).4、D【解析】【分析】先根據(jù)正五邊形的內(nèi)角和求出每個內(nèi)角,再根據(jù)等邊對等角得出∠ABE=∠AEB,然后利用三角形內(nèi)角和求出∠ABE=即可.【詳解】解:∵五邊形是⊙O的內(nèi)接正五邊形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故選:D.【考點】本題考查圓內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計算,掌握圓內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計算是解題關(guān)鍵.5、B【解析】【分析】根據(jù)二次函數(shù)圖象的性質(zhì)對各項進行分析判斷即可.【詳解】解:拋物線解析式可知,A、由于,故拋物線開口方向向下,選項不符合題意;B、拋物線對稱軸為,結(jié)合其開口方向向下,可知當(dāng)時,y隨x增大而減小,選項說法正確,符合題意;C、由于拋物線開口方向向下,故函數(shù)有最大值,且最大值為-2,選項不符合題意;D、拋物線頂點坐標(biāo)為(-1,-2),選項不符合題意.故選:B.【考點】本題主要考查了二次函數(shù)的性質(zhì),解題關(guān)鍵是熟練運用拋物線的開口方向、對稱軸、頂點坐標(biāo)以及二次函數(shù)圖象的增減性解題.6、D【解析】【分析】通過△ABD∽△DCE,可得,即可求解.【詳解】解:∵△ABC是等邊三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故選:D.【考點】本題考查了三角形的相似,做題的關(guān)鍵是△ABD∽△DCE.二、多選題1、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標(biāo)函數(shù)圖象到原函數(shù)圖象方向正好相反.2、ABCD【解析】【分析】連接OD,CD是⊙O的切線,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等邊三角形,∠C=∠BDC=30°,再結(jié)合在直角三角形中300所對的直角邊等于斜邊的一半,繼而得到結(jié)論.【詳解】解:如圖,連接OD,∵CD是⊙O的切線,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,故選項D成立;∴△OBD是等邊三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,故選項B成立;∴AB=2BC,故選項C成立;∴∠A=∠C,∴DA=DC,故選項A成立;綜上所述,故選項ABCD均成立,故選:ABCD.【考點】本題考查了圓的有關(guān)性質(zhì)的綜合應(yīng)用,在本題中借用切線的性質(zhì),求得相應(yīng)角的度數(shù)是解題的關(guān)鍵.3、ABCD【解析】【分析】由圓心角、弧、弦的關(guān)系定理得出ABCD正確,即可得出結(jié)論.【詳解】解:根據(jù)圓心角、弧、弦的關(guān)系定理得:在圓上依次截取等于半徑的弦,六條弧相等,就可以六等分圓,∴A正確;∵相互垂直的兩條直徑得出4個相等的圓心角是直角,∴4條弧相等,∴B正確;在圓上依次截取等于半徑的弦,六條弧相等,六個等分點中三個不相鄰的點三等分圓,∴C正確;∵相互垂直的兩條直徑得出4個相等的圓心角是直角,再平分四條弧,就可以八等分圓周,∴D正確;故選:ABCD.【考點】本題考查了正多邊形和圓、圓心角、弧、弦的關(guān)系定理;熟練掌握圓心角、弧、弦的關(guān)系定理,由題意得出相等的弧是解題的關(guān)鍵.4、AC【解析】【分析】聯(lián)立求得的坐標(biāo),然后根據(jù)待定系數(shù)法即可求解反比例函數(shù)解析式,然后可得點B的坐標(biāo),則有根據(jù)割補法進行求解三角形面積,進而根據(jù)軸對稱的性質(zhì)可求解當(dāng)△ABC的周長最小時點C的坐標(biāo)【詳解】解:聯(lián)立,解得,點坐標(biāo)為.將代入,得..反比例函數(shù)的表達式為;∴聯(lián)立,解得或..在中,令,得.故直線與軸的交點為.如圖,過、兩點分別作軸的垂線,交軸于、兩點,則.過點A作y軸的對稱點D,連接BD,交y軸于點C,此時△ABC的周長為最小,如圖所示:∴,設(shè)直線BD的解析式為,則有:,解得:,∴直線BD的解析式為,令x=0時,則有,∴;綜上所述:正確的有AC選項;故選AC【考點】本題考查了反比例函數(shù)與一次函數(shù)的交點,體現(xiàn)了方程思想,數(shù)形結(jié)合是解題的關(guān)鍵.5、AC【解析】【分析】由a、b、c的關(guān)系可知,△ABC是直角三角形,然后根據(jù)銳角三角函數(shù)的定義求各角函數(shù)值.【詳解】解:由題意,∠A,∠B,∠C對邊分別為a,b,c,a=5,b=12,c=13,∴△ABC是直角三角形,∠C=90°.∴A、sinA=,該選項正確,符合題意;B、cosA=,該選項不正確,不符合題意;C、tanA=,該選項正確,符合題意;D、sinB=,該選項不正確,不符合題意;故選:AC.【考點】本題考查的是銳角三角函數(shù)的定義,銳角A的對邊a與斜邊c的比叫做∠A的正弦;銳角A的鄰邊b與斜邊c的比叫做∠A的余弦;銳角A的對邊a與鄰邊b的比叫做∠A的正切.6、ACD【解析】【分析】利用待定系數(shù)法將各點坐標(biāo)兩兩組合代入,求得拋物線解析式為,再根據(jù)對稱軸直線求解即可得到A選項是正確答案,由拋物線解析式為,令,求解即可得到拋物線與x軸的交點坐標(biāo)(-1,0)和(2,0),從而判斷出B選項不正確,令關(guān)于x的一元二次方程的根的判別式當(dāng),解得,從而得到C選項正確,根據(jù)拋物線圖象的性質(zhì)由,推出,從而推出,得到D選項正確.【詳解】當(dāng)拋物線圖象經(jīng)過點A和點B時,將A(1,-2)和B(2,-2)分別代入,得,解得,不符合題意,當(dāng)拋物線圖象經(jīng)過點B和點C時,將B(2,-2)和C(2,0)分別代入,得,此時無解,當(dāng)拋物線圖象經(jīng)過點A和點C時,將A(1,-2)和C(2,0)分別代入得,解得,因此,拋物線經(jīng)過點A和點C,其解析式為,拋物線的對稱軸為直線,故A選項正確,因為,所以,拋物線與x軸的交點坐標(biāo)是(-1,0)和(2,0),故B選項不正確,由得,方程根的判別式當(dāng),時,,當(dāng)時,即,解得,此時關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,故C選項正確,因為拋物線與x軸交于點(-1,0)和(2,0),且其圖象開口向上,若P(m,n)和Q(m+4,h)都是拋物線上的點,且n<0,得,又得,所以h>0,故D選項正確.故選ACD.【考點】本題考查拋物線與x軸的交點?根的判別式?二次函數(shù)的性質(zhì)及二次函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是利用數(shù)形結(jié)合思想,充分掌握求二次函數(shù)的對稱軸及交點坐標(biāo)的解答方法.7、CD【解析】【分析】要正確理解切線的定義:和圓有唯一公共點的直線是圓的切線.掌握切線的判定:①經(jīng)過半徑的外端,且垂直于這條半徑的直線,是圓的切線;②到圓心的距離等于半徑的直線是該圓的切線.【詳解】解:A中,與圓有兩個公共點的直線,是圓的割線,故該選項不符合題意;B中,應(yīng)經(jīng)過此半徑的外端,故該選項不符合題意;C中,根據(jù)切線的判定方法,故該選項符合題意;D中,根據(jù)切線的判定方法,故該選項符合題意.故選:CD.【考點】本題考查了切線的判定.注意掌握切線的判定定理與切線的定義是解此題的關(guān)鍵.三、填空題1、9【解析】【分析】連接OC和OE,由同弧所對的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點】本題考查了圓周角定理及垂徑定理等相關(guān)知識點,本題的關(guān)鍵是求出∠COB=60°.2、②④##④②【解析】【分析】先畫出函數(shù)圖像,判斷出當(dāng)時拋物線和反比例函數(shù)圖象上的點的縱坐標(biāo)的關(guān)系,確定拋物線右支與反比例函數(shù)圖象的交點個數(shù),再利用拋物線的對稱性與反比例函數(shù)的圖象與性質(zhì)直接判斷即可.【詳解】解:∵拋物線,∴該拋物線對稱軸為,頂點坐標(biāo)為(1,),將該拋物線向上平移()個單位長度,則頂點坐標(biāo)為(1,),當(dāng)時,反比例函數(shù)圖象上點的坐標(biāo)為(1,),如圖所示,拋物線平移后的頂點縱坐標(biāo)即為m,反比例函數(shù)上橫坐標(biāo)為1的點的縱坐標(biāo)即為s,∴m-s=,∵<k<,∴∴拋物線的右支與反比例函數(shù)圖象只有一個交點,且該交點橫坐標(biāo)大于1;∵平移后的拋物線與雙曲線y=(x>0)交于點P(p,q),M(1+,n),∴點M為拋物線右支與反比例函數(shù)圖象的交點,∴點P為拋物線左支與反比例函數(shù)圖象的交點,由于反比例函數(shù)的圖像在第一象限內(nèi)y隨x的增大而減小,且拋物線關(guān)于直線對稱∴1-<p<1;q>2k-k.∴②④正確;故答案為:②④.【考點】本題考查了拋物線與反比例函數(shù)的圖像與性質(zhì),解題關(guān)鍵是弄清楚這兩個交點分別位于拋物線的左支和右支上,再利用拋物線的軸對稱性和反比例函數(shù)圖像的增減性進行判斷.3、-2【解析】【分析】根據(jù)二次函數(shù)圖象對稱軸所在的直線與x軸的交點的坐標(biāo),即為它的圖象與x軸兩交點之間線段中點的橫坐標(biāo),即可求得.【詳解】解:函數(shù)圖像與x軸的兩個交點坐標(biāo)為和由對稱軸所在的直線為:解得故答案為:-2.【考點】本題考查了二次函數(shù)的性質(zhì)及中點坐標(biāo)的求法,熟練掌握和運用二次函數(shù)的性質(zhì)及中點坐標(biāo)的求法是解決本題的關(guān)鍵.4、19.5m.【解析】【分析】作DE⊥AB于E,根據(jù)tan∠ADE=求出AE,故可求解.【詳解】解:作DE⊥AB于E,在Rt△ADE中,tan∠ADE=,∴AE=DE?tan∠ADE=18×=18,∴AB=AE+EB=18+1.5=19.5(m),故答案為:19.5m.【考點】此題主要考查解直角三角形的應(yīng)用-仰角俯角問題,解題的關(guān)鍵是熟知正切的定義.5、【解析】【分析】先由角平分線的定義及平行線的性質(zhì)求得∠EDC=∠ECD,從而EC=DE;再DE∥BC,證得△ADE∽△ABC,然后根據(jù)相似三角形的性質(zhì)列出比例式,求得DE的長,即為EC的長.【詳解】解:∵DC為∠ACB的平分線∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案為:【考點】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的判定及相似三角形的判定與性質(zhì),熟練掌握相關(guān)性質(zhì)與定理是解題的關(guān)鍵.6、6【解析】【分析】解直角三角形求出AB、BC,再求出CD,連接CG,根據(jù)直角三角形斜邊上的中線等于斜邊的一半求出CG,然后根據(jù)三角形的任意兩邊之和大于第三邊判斷出D、C、G三點共線時DG有最大值,再代入數(shù)據(jù)進行計算即可得解.【詳解】連接CG,∵BC的中點為D∵△ABC繞點C順時針旋轉(zhuǎn)任意一個角度得到△FEC,EF的中點為G由三角形的三邊關(guān)系得∴D、C、G三點共線時,DG有最大值故答案為:6.【考點】本題考查了旋轉(zhuǎn)三角形的問題,掌握旋轉(zhuǎn)的性質(zhì)、解直角三角形、三角形的三邊關(guān)系是解題的關(guān)鍵.7、2019【解析】【分析】先將點(m,0)代入函數(shù)解析式,然后求代數(shù)式的值即可得出結(jié)果.【詳解】解:將(m,0)代入函數(shù)解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.故答案為:2019.【考點】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征及求代數(shù)式的值,解題的關(guān)鍵是將點(m,0)代入函數(shù)解析式得到有關(guān)m的代數(shù)式的值.四、解答題1、(1);(2)①的面積;②xy=12;③.【解析】【分析】(1)連接、,利用ASA證出,從而得出的面積與四邊形的面積相等,過點作于點,利用銳角三角函數(shù)求出OH即可求出△OBC的面積,從而得出結(jié)論;(2)①根據(jù)等邊三角形的性質(zhì)可得,從而求出∠BOD,然后根據(jù)30°所對的直角邊是斜邊的一半和勾股定理即可求出OD和BD,從而求出結(jié)論;②過點作于,于,根據(jù)相似三角形判定定理可得,根據(jù)相似三角形的性質(zhì)列出比例式,變形可得,然后根據(jù)三角形的面積公式即可求出結(jié)論;③過點作交的延長線于,于,根據(jù)相似三角形的判定定理可得,根據(jù)相似三角形的性質(zhì)列出比例式,變形可得,分別求出OM和ON,再結(jié)合三角形的面積公式即可求出結(jié)論.【詳解】解:(1)連接、∵是等邊三角形,∴∵是和的角平分線交點∴∴,∴∴∴的面積與四邊形的面積相等過點作于點∵,∴∵,∴,∴∴四邊形的面積為.故答案為:.(2)①∵是等邊三角形,∴∵于點,∴∵,∴,,∴的面積②過點作于,于.由①得:,同理:∵是等邊三角形,∴∵,∴∴,∴∴,∴∴③過點作交的延長線于,于.∵,∴∴,∵∴,∴∴∵,,∴,∴∵,,∴,∴∴【考點】此題考查的是全等三角形的判定及性質(zhì)、等邊三角形的性質(zhì)、相似三角形的判定及性質(zhì)和銳角三角函數(shù),掌握全等三角形的判定及性質(zhì)、等邊三角形的性質(zhì)、相似三角形的判定及性質(zhì)和銳角三角函數(shù)是解決此題的關(guān)鍵.2、(1),M(,);(2),(,);(3)證明見試題解析.【解析】【詳解】試題分析:(1)利用配方法把一般式轉(zhuǎn)化為頂點式,然后根據(jù)二次函數(shù)的性質(zhì)求出拋物線的頂點坐標(biāo);(2)連接BC,則BC與對稱軸的交點為R,此時CR+AR的值最??;先求出點A、B、C的坐標(biāo),再利用待定系數(shù)法求出直線BC的解析式,進而求出其最小值和點R的坐標(biāo);(3)設(shè)點P坐標(biāo)為(x,).根據(jù)NPAB=,列出方程,解方程得到點P坐標(biāo),再計算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切線的判定定理即可證明直線MP是⊙N的切線.試題解析:(1)∵=,∴拋物線的解析式化為頂點式為:,頂點M的坐標(biāo)是(,);(2)∵,∴當(dāng)y=0時,,解得x=1或6,∴A(1,0),B(6,0),∵x=0時,y=﹣3,∴C(0,﹣3).連接BC,則BC與對稱軸x=的交點為R,連接AR,則CR+AR=CR+BR=BC,根據(jù)兩點之間線段最短可知此時CR+AR的值最小,最小值為BC==.設(shè)直線BC的解析式為,∵B(6,0),C(0,﹣3),∴,解得:,∴直線BC的解析式為:,令x=,得y==,∴R點坐標(biāo)為(,);(3)設(shè)點P坐標(biāo)為(x,).∵A(1,0),B(6,0),∴N(,0),∴以AB為直徑的⊙N的半徑為AB=,∴NP=,即,移項得,,得:,整理得:,解得(與A重合,舍去),,(在對稱軸的右側(cè),舍去),(與B重合,舍去),∴點P坐標(biāo)為(2,2).∵M(,),N(,0),∴==,==,==,∴,∴∠MPN=90°,∵點P在⊙N上,∴直線MP是⊙N的切線.考點:1.二次函數(shù)綜合題;2.最值問題;3.切線的判定;4.壓軸題.3、(1)見解析;(2)見解析【解析】【分析】(1)想辦法證明AG=PF,AG∥PF,推出四邊形AGFP是平行四邊形,再證明PA=PF即可解決問題.(2)證明△AEP∽△DEC,可得,由此即可解決問題.【詳解】解:(1)∵平分,,,∴,,又∵在中,,在中,∴,又∵,∴,∴,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論