難點(diǎn)詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合練習(xí)試卷(解析版含答案)_第1頁
難點(diǎn)詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合練習(xí)試卷(解析版含答案)_第2頁
難點(diǎn)詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合練習(xí)試卷(解析版含答案)_第3頁
難點(diǎn)詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合練習(xí)試卷(解析版含答案)_第4頁
難點(diǎn)詳解人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合練習(xí)試卷(解析版含答案)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在矩形ABCD中,AB=1,BC=2,將其折疊,使AB邊落在對角線AC上,得到折痕AE,則點(diǎn)E到點(diǎn)B的距離為()A. B. C. D.2、如圖,將矩形紙片ABCD沿BD折疊,得到△BC′D,C′D與AB交于點(diǎn)E,若∠1=40°,則∠2的度數(shù)為()A.25° B.20° C.15° D.10°3、如圖,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分別是AB,AC的中點(diǎn),連接DE,BE,點(diǎn)M在CB的延長線上,連接DM,若∠MDB=∠A,則四邊形DMBE的周長為()A.16 B.24 C.32 D.404、如圖,長方形紙片ABCD中,AB=3cm,AD=9cm,將此長方形紙片折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)H的位置,折痕為EF,則△ABE的面積為()A.6cm2 B.8cm2 C.10cm2 D.12cm25、如圖,在中,,點(diǎn),分別是,上的點(diǎn),,,點(diǎn),,分別是,,的中點(diǎn),則的長為().A.4 B.10 C.6 D.8第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、平面直角坐標(biāo)系中,四邊形ABCD的頂點(diǎn)坐標(biāo)分別是A(-3,0),B(0,2),C(3,0),D(0,-2),則四邊形ABCD是__________.2、如圖,在矩形中,,,點(diǎn)是線段上的一點(diǎn)(不與點(diǎn),重合),將△沿折疊,使得點(diǎn)落在處,當(dāng)△為等腰三角形時(shí),的長為___________.3、在五邊形紙片ABCDE中,AB=2,∠A=120°,將五邊形紙片ABCDE沿BD折疊,點(diǎn)C落在點(diǎn)P處;在AE上取一點(diǎn)Q,將ABQ,EDQ分別沿BQ,DQ折疊,點(diǎn)A,E恰好落在點(diǎn)P處,如圖1.(1)∠BPQ=______°;(2)∠BCD+∠QED=_______°;(3)如圖2,當(dāng)四邊形BCDP是菱形,且Q,P,C三點(diǎn)共線時(shí),BQ=_______.4、在四邊形ABCD中,若AB//CD,BC_____AD,則四邊形ABCD為平行四邊形.5、如圖,已知正方形ABCD的邊長為6,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM若AE=2,則FM的長為___.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在平行四邊形中,連接.(1)請用尺規(guī)完成基本作圖:在上方作,使,射線交于點(diǎn)F,在線段上截取,使.(2)連接,求證:四邊形是菱形.2、如圖:在中,,,點(diǎn)為的中點(diǎn),點(diǎn)為直線上的動(dòng)點(diǎn)(不與點(diǎn),重合),連接,,以為邊在的上方作等邊,連接.(1)是________三角形;(2)如圖1,當(dāng)點(diǎn)在邊上時(shí),運(yùn)用(1)中的結(jié)論證明;(3)如圖2,當(dāng)點(diǎn)在的延長線上時(shí),(2)中的結(jié)論是否依然成立?若成立,請加以證明,若不成立,請說明理由.3、如圖,在平行四邊形中,E是上一點(diǎn).(1)用尺規(guī)完成以下基本操作:在下方作,使得,交于點(diǎn)F.(保留作圖痕跡,不寫作法)(2)在(1)所作的圖形中,已知,,求的度數(shù).4、如圖,在△ABC中,點(diǎn)D,E分別是AC,AB的中點(diǎn),點(diǎn)F是CB延長線上的一點(diǎn),且CF=3BF,連接DB,EF.(1)求證:四邊形DEFB是平行四邊形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四邊形DEFB的周長.5、如圖,在正方形ABCD中,DF=AE,AE與DF相交于點(diǎn)O.(1)求證:△DAF≌△ABE;(2)求∠AOD的度數(shù).-參考答案-一、單選題1、C【解析】【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解設(shè)BE=x,在Rt△EFC中利用勾股定理列出方程,通過解方程可得答案.【詳解】解:矩形ABCD,設(shè)BE=x,∵AE為折痕,∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,∴Rt△EFC中,,EC=2-x,∴,解得:,則點(diǎn)E到點(diǎn)B的距離為:.故選:C.【點(diǎn)睛】本題考查了勾股定理和矩形與折疊問題;二次根式的乘法運(yùn)算,利用對折得到,再利用勾股定理列方程是解本題的關(guān)鍵.2、D【解析】【分析】根據(jù)矩形的性質(zhì),可得∠ABD=40°,∠DBC=50°,根據(jù)折疊可得∠DBC′=∠DBC=50°,最后根據(jù)∠2=∠DBC′?∠DBA進(jìn)行計(jì)算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折疊可得∠DBC′=∠DBC=50°,∴∠2=∠DBC′?∠DBA=50°?40°=10°,故選D.【點(diǎn)睛】本題考查了長方形性質(zhì),平行線性質(zhì),折疊性質(zhì),角的有關(guān)計(jì)算的應(yīng)用,關(guān)鍵是求出∠DBC′和∠DBA的度數(shù).3、C【解析】【分析】由中點(diǎn)的定義可得AE=CE,AD=BD,根據(jù)三角形中位線的性質(zhì)可得DE//BC,DE=BC,根據(jù)平行線的性質(zhì)可得∠ADE=∠ABC=90°,利用ASA可證明△MBD≌△EDA,可得MD=AE,DE=MB,即可證明四邊形DMBE是平行四邊形,可得MD=BE,進(jìn)而可得四邊形DMBE的周長為2DE+2MD=BC+AC,即可得答案.【詳解】∵D,E分別是AB,AC的中點(diǎn),∴AE=CE,AD=BD,DE為△ABC的中位線,∴DE//BC,DE=BC,∵∠ABC=90°,∴∠ADE=∠ABC=90°,在△MBD和△EDA中,,∴△MBD≌△EDA,∴MD=AE,DE=MB,∵DE//MB,∴四邊形DMBE是平行四邊形,∴MD=BE,∵AC=18,BC=14,∴四邊形DMBE的周長=2DE+2MD=BC+AC=18+14=32.故選:C.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì)、三角形中位線的性質(zhì)及平行四邊形的判定與性質(zhì),三角形中位線平行于第三邊且等于第三邊的一半;有一組對邊平行且相等的四邊形是平行四邊形;熟練掌握相關(guān)性質(zhì)及判定定理是解題關(guān)鍵.4、A【解析】【分析】根據(jù)折疊的條件可得:,在中,利用勾股定理就可以求解.【詳解】將此長方形折疊,使點(diǎn)與點(diǎn)重合,,,根據(jù)勾股定理得:,解得:..故選:A.【點(diǎn)睛】本題考查了利用勾股定理解直角三角形,掌握直角三角形兩直角邊的平方和等于斜邊的平方是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)三角形中位線定理得到PD=BF=6,PD∥BC,根據(jù)平行線的性質(zhì)得到∠PDA=∠CBA,同理得到∠PDQ=90°,根據(jù)勾股定理計(jì)算,得到答案.【詳解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵點(diǎn)P,D分別是AF,AB的中點(diǎn),∴PD=BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故選:B.【點(diǎn)睛】本題考查的是三角形中位線定理、勾股定理,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.二、填空題1、菱形【解析】【分析】先在坐標(biāo)系中畫出四邊形ABCD,由A、B、C、D的坐標(biāo)即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【詳解】解:圖象如圖所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四邊形ABCD為平行四邊形,∵AC⊥BD,∴四邊形ABCD為菱形,故答案為:菱形.【點(diǎn)睛】本題主要考查了菱形的判定,坐標(biāo)與圖形,解題的關(guān)鍵在于能夠熟練掌握菱形的判定條件.2、或【解析】【分析】根據(jù)題意分,,三種情況討論,構(gòu)造直角三角形,利用勾股定理解決問題.【詳解】解:∵四邊形是矩形∴,∵將△沿折疊,使得點(diǎn)落在處,∴,,設(shè),則①當(dāng)時(shí),如圖過點(diǎn)作,則四邊形為矩形,在中在中即解得②當(dāng)時(shí),如圖,設(shè)交于點(diǎn),設(shè)垂直平分在中即在中,即聯(lián)立,解得③當(dāng)時(shí),如圖,又垂直平分垂直平分此時(shí)重合,不符合題意綜上所述,或故答案為:或【點(diǎn)睛】本題考查了矩形的性質(zhì),勾股定理,等腰三角形的性質(zhì)與判定,垂直平分線的性質(zhì),分類討論是解題的關(guān)鍵.3、120240【解析】【分析】(1)由折疊的性質(zhì)可得∠A=∠BPQ=120°;(2)由周角的性質(zhì)可得∠BPD+∠QPD+∠BPQ=360°,即可求解;(3)由菱形的性質(zhì)可得BQ=QD,QH⊥BD,BH=DH,由“SSS”可證△ABQ≌△EDQ,可得∠AQB=∠BQP=∠EQD=∠PQD=45°,由直角三角形的性質(zhì)可求解.【詳解】解:(1)∵將五邊形紙片ABCDE沿BD折疊,∴∠A=∠BPQ=120°,∠QED=∠QPD,∠BCD=∠BPD,故答案為:120;(2)∵∠BPD+∠QPD+∠BPQ=360°,∴∠BPD+∠QPD=240°,∴∠BCD+∠QED=240°,故答案為:240;(3)如圖,連接PC,交BD于H,∵四邊形BPDC是菱形,∴PC是BD的垂直平分線,BP=PD=BC=CD,∵Q,P,C三點(diǎn)共線,∴QC是BD的垂直平分線,∴BQ=QD,QH⊥BD,BH=DH,由折疊可知:∠A=∠BPQ=120°,AB=BP=2=DE=DP,∠AQB=∠BQP,∠EQD=∠PQD,AQ=QP=QE,∴∠BPH=60°,∴∠PBH=30°,∴PHBP=1,BHPH,在△ABQ和△EDQ中,,∴△ABQ≌△EDQ(SSS),∴∠AQB=∠EQD,∴∠AQB=∠BQP=∠EQD=∠PQD,∵∠AQE=180°,∴∠AQB=∠BQP=∠EQD=∠PQD=45°,∴∠QBH=∠BQP=45°,∴BH=QH,∴BQBH,故答案為:.【點(diǎn)睛】本題考查了翻折變換,菱形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形的性質(zhì)等知識,掌握折疊的性質(zhì)是解題的關(guān)鍵.4、【解析】【分析】根據(jù)平行四邊形的判定:兩組對邊分別平行的四邊形是平行四邊形即可解決問題.【詳解】解:根據(jù)兩組對邊分別平行的四邊形是平行四邊形可知:∵AB//CD,BC//AD,∴四邊形ABCD為平行四邊形.故答案為://.【點(diǎn)睛】本題考查了平行四邊形的判定,熟練掌握平行四邊形的判定方法是解題的關(guān)鍵.5、5【解析】【分析】由旋轉(zhuǎn)性質(zhì)可證明△EDF≌△MDF,從而EF=FM;設(shè)FM=EF=x,則可得BF=8?x,由勾股定理建立方程即可求得x.【詳解】由旋轉(zhuǎn)的性質(zhì)可得:DE=DM,CM=AE=2,∠ADE=∠CDM,∠EDM=90゜∵四邊形ABCD是正方形∴∠ADC=∠B=90゜,AB=BC=6∴∠ADE+∠FDC=∠ADC?∠EDF=45゜∴∠FDC+∠CDM=45゜即∠MDF=45゜∴∠EDF=∠MDF在△EDF和△MDF中∴△EDF≌△MDF(SAS)∴EF=FM設(shè)EF=FM=x則∴∵在Rt△EBF中,由勾股定理得:解得:故答案為:5【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識,運(yùn)用了方程思想,關(guān)鍵是證明三角形全等.三、解答題1、(1)見解析;(2)見解析【分析】(1)根據(jù)作一個(gè)角等于已知角和作一條線段等于已知線段查得結(jié)論;(2)先證明四邊形AGCF是平行四邊形,再由(1)可得AF=CF,即可得到結(jié)論.【詳解】解:(1)如圖所示:(2)如圖,∵四邊形ABCD是平行四邊形∴AD//BC,AD=BC∴AF//CG∵BG=DF∴AF=CG∴四邊形AGCF是平行四邊形∵∴AF=CF∴四邊形是菱形.【點(diǎn)睛】本題主要考查了基本作圖和證明四邊形是菱形,熟練掌握菱形的判定正理是解答本題的關(guān)鍵.2、(1)等邊;(2)見解析;(3)成立,理由見解析【分析】(1)根據(jù)含30度角的直角三角形的性質(zhì),直角三角形斜邊上的中線等于斜邊的一半可證明,即可證明△OBC是等邊三角形;

(2)先證明,即可利用SAS證明,得到;(3)先證明,即可利用SAS證明,得到.【詳解】(1)∵∠ACB=90°,∠A=30°,O是AB的中點(diǎn),∴,∴△OBC是等邊三角形,故答案為:等邊;(2)由(1)可知,,,是等邊三角形,,,,即,在和中,,;(3)成立,證明:由(1)可知,,,是等邊三角形,,,,即,在和中,,.【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì)與判定,全等三角形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),直角三角形斜邊上的中線,熟練掌握等邊三角形的性質(zhì)與判定條件是解題的關(guān)鍵.3、(1)見解析;(2)【分析】(1)延長,在射線上截取兩點(diǎn),使得,作的垂線,交于點(diǎn),在上截取,作的中垂線,交于點(diǎn),則即為所求;(2)根據(jù)三角形的外角性質(zhì)以及平行線的性質(zhì)即可求得的度數(shù)【詳解】(1)如圖所示,

根據(jù)作圖可知,四邊形是平行四邊形,四邊形是平行四邊形則即為所求;(2),,由(1)可知【點(diǎn)睛】本題考查了尺規(guī)作圖-作垂線,平行四邊形的性質(zhì),三角形的外角性質(zhì),平行線的性質(zhì),掌握基本作圖是解題的關(guān)鍵.4、(1)見解析;(2)平行四邊形DEFB的周長=【分析】(1)證DE是△ABC的中位線,得DE∥BC,BC=2DE,再證DE=BF,即可得出四邊形DEFB是平行四邊形;(2)由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,得BD=EF,再由勾股定理求出BD=10(cm),即可求解.【詳解】(1)證明:∵點(diǎn)D,E分別是AC,AB的中點(diǎn),∴DE是△ABC的中位線,∴DE//BC,BC=2DE,∵CF=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論