難點詳解青島版8年級數(shù)學下冊期末試卷【突破訓練】附答案詳解_第1頁
難點詳解青島版8年級數(shù)學下冊期末試卷【突破訓練】附答案詳解_第2頁
難點詳解青島版8年級數(shù)學下冊期末試卷【突破訓練】附答案詳解_第3頁
難點詳解青島版8年級數(shù)學下冊期末試卷【突破訓練】附答案詳解_第4頁
難點詳解青島版8年級數(shù)學下冊期末試卷【突破訓練】附答案詳解_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

青島版8年級數(shù)學下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖所示,一次函數(shù)的圖象經(jīng)過點,則方程的解是(

)A. B. C. D.無法確定2、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是(

)A. B. C. D.3、甲、乙兩汽車從城出發(fā)前往城,在整個行程中,汽車離開城的距離與時間的對應關系如圖所示,下列結(jié)論錯誤的是(

)A.,兩城相距 B.行程中甲、乙兩車的速度比為3:5C.乙車于7:20追上甲車 D.9:00時,甲、乙兩車相距4、如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,△FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為()A. B.2 C. D.25、估計的值在(

)A.4到5之間 B.5到6之間 C.6到7之間 D.7到8之間6、下列函數(shù)中,y是x的正比例函數(shù)的是(

)A.y=x B.y=5x﹣1 C.y=x2 D.y=7、如圖,在中,,點D是AB的中點,連接CD,若,,則CD的長度是(

)A.1.5 B.2 C.2.5 D.58、如圖,直線與x軸、y軸交于A、B兩點,在y軸上有一點C(0,4),動點M從A點發(fā)以每秒1個單位的速度沿x軸向左移動.當動到△COM與△AOB全等時,移的時間t是(

)A.2 B.4 C.2或4 D.2或6第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,某自動感應門的正上方A處裝著一個感應器,離地面的高度AB為2.5米,一名學生站在C處時,感應門自動打開了,此時這名學生離感應門的距離BC為1.2米,頭頂離感應器的距離AD為1.5米,則這名學生身高CD為_____米.2、我國古代數(shù)學著作《九章算術(shù)》中記載了一個問題:“今有池方一丈,葭(ji?。┥渲?,出水一尺.引葭赴岸(丈、尺是長度單位,1丈10尺)其大意為:有一個水池,水面是一個邊長為10尺的正方形,它高出水面1尺(即BC=1尺).如果把這根蘆葦拉向水池一邊的中點,它的頂端B恰好到達池邊的水面D處,問水的深度是多少?則水深DE為_____尺.3、正方形A1B1C1O,A2B2C2C1,A3BC3C2,…按如圖所示的方式放置.點A1,A2,A3,…和點C1,C2,C3,…分別在直線y=kx+b(k>0)和y軸上,已知點B1(1,1),B2(2,3),則點B3的坐標是_____,點Bn的坐標是_____.4、如圖,F(xiàn)為正方形ABCD的邊CD上一動點,AB=2,連接BF,過A作AH⊥BF交BC于H,交BF于G,連接CG,當CG為最小值時,CH的長為_____.5、解不等式組的解集是_______.6、在函數(shù)中,自變量的取值范圍是__.7、如圖,邊長為1的正六邊形放置于平面直角坐標系中,邊在軸正半軸上,頂點在軸正半軸上,將正六邊形繞坐標原點順時針旋轉(zhuǎn),每次旋轉(zhuǎn),那么經(jīng)過第2022次旋轉(zhuǎn)后,頂點的坐標為________.三、解答題(7小題,每小題10分,共計70分)1、【閱讀材料】數(shù)列是一個古老的數(shù)學課題,我國對數(shù)列概念的認識很早,例如《易傳?系辭》:“河出圖,洛出書,圣人則之;兩儀生四象,四象生八卦”.這是世界數(shù)學史上有關等比數(shù)列的最早文字記載.【問題提出】求等比數(shù)列1+a1+a2+a3+…+an的值(a>0,且a≠1,n是正整數(shù),請寫出計算過程).【等比數(shù)列】按照一定順序排列著的一列數(shù)稱為數(shù)列,數(shù)列中的每一個數(shù)叫做這個數(shù)列的項.排在第一位的數(shù)稱為第一項,記為a1,排在第二位的數(shù)稱為第二項,記為a2,依此類推,排在第n位的數(shù)稱為第n項,記為an.所以,數(shù)列的一般形式可以寫成:a1,a2,a3,…,an,….一般地,如果一個數(shù)列從第二項起,每一項與它前一項的比值等于同一個常數(shù),那么這個數(shù)列叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比,公比通常用q表示.如:數(shù)列1,2,4,8,…為等比數(shù)列,其中a1=1,a2=2,公比為q=2.根據(jù)以上材料,解答下列問題:(1)等比數(shù)列3,9,27,…的公比q為_____,第5項是_____.【公式推導】如果一個數(shù)列a1,a2,a3,…,an…,是等比數(shù)列,且公比為q,那么根據(jù)定義可得到:=q,=q,=q,…,=q.所以a2=a1?q,a3=a2?q=a1q?q=a1?q2,a4=a3?q=a1?q2=a1?q3,…(2)由此,請你填空完成等比數(shù)列的通項公式:an=a1?(_____).【拓廣探究】等比數(shù)列求和公式并不復雜,但是其推導過程——錯位相減法,構(gòu)思精巧、形式奇特.歐幾里得在《幾何原本》中就給出了等比數(shù)列前n項和公式,而錯位相減法則直到1822年才由歐拉在《代數(shù)學基礎》中給出,時間相差兩千多年.下面是小明為了計算1+2+22+…+22019+22020的值,采用的方法:設S=1+2+22+…+22019+22020①,則2S=2+22+…+22020+22021②,②-①得2S-S=S=22021-1,∴S=1+2+22+…+22019+22020=22021-1.【解決問題】(3)請仿照小明的方法求等比數(shù)列1+a1+a2+a3+…+an的值(a>0,且a≠1,n是正整數(shù),請寫出計算過程).【拓展應用】(4)計算25+252+253+…+25n的值為_____.(直接寫出結(jié)果)2、在平面直角坐標系中,將兩塊分別含45°和30°的直角三角板按如圖放置(∠C=30°,AC=2AB),BC=.(1)點A坐標為____________,點B坐標為______________,點C坐標為________________;(2)平面內(nèi)存在點D(與點A不重合),使得△DBC與△ABC全等,請你直接寫出點D的坐標.3、(﹣1)2021.4、已知:如圖,一次函數(shù)的圖像分別與x軸、y軸相交于點A、B,且與經(jīng)過x軸負半軸上的點C的一次函數(shù)y=kx+b的圖像相交于點D,直線CD與y軸相交于點E,E與B關于x軸對稱,OA=3OC.(1)直線CD的函數(shù)表達式為______;點D的坐標______;(直接寫出結(jié)果)(2)點P為線段DE上的一個動點,連接BP.①若直線BP將△ACD的面積分為兩部分,試求點P的坐標;②點P是否存在某個位置,將△BPD沿著直線BP翻折,使得點D恰好落在直線AB上方的坐標軸上?若存在,求點P的坐標;若不存在,請說明理由.5、如圖,已知矩形ABCD的兩條對角線相交于點O,∠ACB=30°,AB=2.(1)求AC的長及∠AOB的度數(shù);(2)以OB,OC為鄰邊作菱形OBEC,求菱形OBEC的面積.6、如圖,在邊長為1的小正方形組成的網(wǎng)格中,ABC的三個頂點均在格點上,請按要求完成下列各題.(1)畫出ABC關于直線MN對稱的A1B1C1;(2)求AB1C的面積;(3)試判斷ABC的形狀并說明理由.7、如圖,在△ABC中,∠ACB=90°.(1)在斜邊AB上找一點P,使點P到AC的距離等于BP的長.請用無刻度直尺和圓規(guī)作出點P(不寫畫法,保留作圖痕跡);(2)若BC=4.5,AB=7.5,則AC的長為_______,(1)中BP的長為_______.-參考答案-一、單選題1、C【解析】【分析】將點代入直線解析式,然后與方程對比即可得出方程的解.【詳解】解:一次函數(shù)的圖象經(jīng)過點,∴,∴為方程的解,故選:C.【點睛】題目主要考查一次函數(shù)與一元一次方程的聯(lián)系,理解二者聯(lián)系是解題關鍵.2、C【解析】【詳解】A、中心對稱圖形,不符合題意;B、軸對稱圖形,不符合題意;C、軸對稱圖形,又是中心對稱圖形,符合題意;D、軸對稱圖形,不符合題意;故點C.【點睛】本題考查軸對稱圖形與中心對稱圖形的定義,軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫軸對稱圖形;中心對稱圖形的概念:在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與原來的圖形重合,這個圖形稱為中心對稱圖形.熟悉軸對稱圖形和中心對稱圖形的概念是本題的解題關鍵.3、C【解析】【分析】根據(jù)整個行程中,汽車離開A城的距離y與時刻t的對應關系,即可得到正確結(jié)論.【詳解】解:A、由題可得,A,B兩城相距300千米,故A結(jié)論正確,不符合題意;B、甲車的平均速度為:300÷(10-5)=60(千米/時),乙車的平均速度為:300÷(9-6)=100(千米/時),所以行程中甲、乙兩車的速度比為3:5,故B結(jié)論正確,不符合題意;C、設乙出發(fā)x小時后追上了甲,則100x=60(x+1),解得x=1.5,即乙車于7:30追上甲車,故C結(jié)論錯誤,符合題意;D、9:00時甲車所走路程為:60×(9-5)=240(km),300-240=60(km),即9:00時,甲、乙兩車相距60km,故D結(jié)論正確,不符合題意.故選:C.【點睛】此題主要考查了看函數(shù)圖象,以及一次函數(shù)的應用,關鍵是正確從函數(shù)圖象中得到正確的信息.4、C【解析】【分析】通過分析圖象,點F從點A到D用as,此時,△FBC的面積為a,依此可求菱形的高DE,再由圖象可知,BD=,應用兩次勾股定理分別求BE和a.【詳解】解:過點D作DE⊥BC于點E,由圖象可知,點F由點A到點D用時為as.∴,∴,∴DE=2.當點F從D到B時,用時為s∴BD=∴在中,.∴,∴在中,,即,解得:.故選:C.【點睛】本題綜合考查了菱形性質(zhì)和一次函數(shù)圖象性質(zhì),解答過程中要注意函數(shù)圖象變化與動點位置之間的關系.5、B【解析】【分析】先進行二次根式的混合運算,然后再估算結(jié)果的值即可解答.【詳解】解:==∵∴∴∴故答案選:B.【點睛】本題考查了二次根式的混合運算,估算無理數(shù)的大小,把根號外的數(shù)移到根號內(nèi)然后再進行估算是解題的關鍵.6、A【解析】【分析】根據(jù)正比例函數(shù)的定義判斷即可.【詳解】解:A.y=x,是正比例函數(shù),故選項符合題意;B.y=5x﹣1,是一次函數(shù),故選項不符合題意;C.y=x2,是二次函數(shù),故選項不符合題意;D.y=,是反比例函數(shù),故選項不符合題意;故選:A.【點睛】本題考查了正比例函數(shù)的定義,熟練掌握正比例函數(shù)的定義是解題的關鍵.形如的函數(shù)是正比例函數(shù).7、C【解析】【分析】先利用勾股定理可得,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可得.【詳解】解:在中,,,,,點是的中點,,故選:C.【點睛】本題考查了勾股定理、直角三角形斜邊上的中線等于斜邊的一半,熟練掌握直角三角形斜邊上的中線等于斜邊的一半是解題關鍵.8、D【解析】【分析】先求解的坐標,再利用全等三角形的性質(zhì)求解再結(jié)合軸對稱的性質(zhì)可得答案.【詳解】解:直線與x軸、y軸交于A、B兩點,令則令,則而當時,而如圖,當關于軸對稱時,此時此時故選:D【點睛】本題考查的是一次函數(shù)的性質(zhì),全等三角形的判定與性質(zhì),熟悉全等三角形的基本圖形是解本題的關鍵.二、填空題1、1.6【解析】【分析】過點D作DE⊥AB于E,則CD=BE,DE=BC=1.2米,由勾股定理得出AE=0.9(米),則BE=AB-AE=1.6(米),即可得出答案.【詳解】解:過點D作DE⊥AB于E,如圖所示:則CD=BE,DE=BC=1.2米=米,在Rt△ADE中,AD=1.5米=米,由勾股定理得:AE==0.9(米),∴BE=AB-AE=2.5-0.9=1.6(米),∴CD=BE=1.6米,故答案為:1.6.【點睛】本題考查了勾股定理的應用,正確作出輔助線構(gòu)造直角三角形是解題的關鍵.2、12【解析】【分析】設水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理列方程,解出h即可.【詳解】設水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理,得(h+1)2-h2=52解得h=12,∴水深為12尺,故答案是:12.【點睛】本題主要考查勾股定理的應用,熟練根據(jù)勾股定理列出方程是解題的關鍵.3、

(4,7)

(2n-1,2n-1)【解析】【分析】先由點B1(1,1)得到點A1的坐標,然后由B2(2,3)得到A2的坐標,進而得到直線的解析式,再令y=3求得點A3的坐標,從而求得點B3的坐標,?,再依次求得點Bn的坐標.【詳解】解:∵點B1(1,1),B2(2,3),∴點A1(1,0),A2(2,1),將點A1(1,0),A2(2,1)代入y=kx+b得,,解得:,∴直線的解析式為y=x-1,令y=3得,x-1=3,∴x=4,∴點A3的坐標為(4,3),∴A3B3=4,∴B3的坐標為(4,7),令y=7得,x-1=7,∴x=8,∴點A4的坐標為(8,7),∴A4B4=8,∴B4的坐標為(8,15),?,∴點Bn的坐標為(2n-1,2n-1),故答案為:(4,7),(2n-1,2n-1).【點睛】本題考查了一次函數(shù)圖象上點的坐標特征、正方形的性質(zhì),解題的關鍵是通過一次函數(shù)圖象上點的坐標特征求得系列點B的坐標.4、##【解析】【分析】取AB的中點O,連接OG,OC,根據(jù)的長為定值,當O,G,C共線時,CG的值最小,證明CF=CG=BH即可解決問題.【詳解】解:如圖,取AB的中點O,連接OG,OC.四邊形ABCD是正方形,ABC=90°,AB=2,OB=OA=1,,AH⊥BF,AGB=90°,AO=OB,OG=AB=1,,當O、G、C共線時,CG的值最小,最小值=,此時如圖,OB=OG=1,OBG=OGB,ABCD,OBG=CFG,OGB=CGF,CGF=CFG,CF=CG=,ABH=BCF=AGB=90°,∠BAH+∠ABG=90°,∠ABG+∠CBF=90°,∠BAH=∠CBF,AB=BC,△ABH△BCF(ASA),BH=CF=,CH=BC-BH=2-()=3-,故答案為:【點睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形斜邊中線的性質(zhì),等腰三角形的判定和性質(zhì)等知識,解題的關鍵是學會添加常用輔助線.5、x>2【解析】【分析】分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】解:解不等式得:x>-3,解不等式x-2>0,得:x>2,則不等式組的解集為x>2,故答案為:x>2.【點睛】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.6、且【解析】【分析】根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于等于0,分母不等于0,計算求解即可.【詳解】解:由題意得,,解得且.故答案為:且.【點睛】本題考查了分式有意義的條件,二次根式的被開方數(shù)是非負數(shù).解題的關鍵在于對分式有意義的條件,二次根式被開方數(shù)非負知識的熟練掌握.7、【解析】【分析】連接AD、BD,由勾股定理可得BD,求出∠OFA=30°,得到OA的值,進而求得OB的值,得到點D的坐標,由題意可得6次一個循環(huán),即可求出經(jīng)過第2022次旋轉(zhuǎn)后,頂點的坐標.【詳解】解:如圖,連接AD,BD,在正六邊形ABCDEF中,,∴,在中,,∴,∴,∴,∴,∵將正六邊形ABCDEF繞坐標原點O順時針旋轉(zhuǎn),每次旋轉(zhuǎn)60°,∴6次一個循環(huán),∵,∴經(jīng)過第2022次旋轉(zhuǎn)后,頂點D的坐標與第一象限中D點的坐標相同,故答案為:.【點睛】此題考查了正六邊形的性質(zhì),平面直角坐標系中圖形規(guī)律問題,解題的關鍵是正確分析出點D坐標的規(guī)律.三、解答題1、(1)3,243;(2)qn-1;【解決問題】;【拓展應用】【解析】【分析】(1)根據(jù)等比數(shù)列的公比的定義求解即可;(2)探究規(guī)律利用規(guī)律解決問題;【解決問題】設S=1+a1+a2+a3+…+an,則aS=a1+a2+a3+…+an+1,兩式相減即可求得;【拓展應用】設S=25+252+253+…+25n,則25S=252+253+…+25n+1,兩式相減即可求得.【詳解】解:(1)等比數(shù)列3,9,27,…的公比q為3,第四項為27×3=81,第五項為81×3=243,故答案為:3,243.(2)如果一個數(shù)列a1,a2,a3,…,an…,是等比數(shù)列,且公比為q,那么根據(jù)定義可得到:=q,=q,=q,…,=q.所以a2=a1?q,a3=a2?q=a1q?q=a1?q2,a4=a3?q=a1?q2=a1?q3,…an=a1.qn-1.故答案為:qn-1.(3)設S=1+a1+a2+a3+…+an①,則aS=a1+a2+a3+…+an+1②,②-①得aS-S=(a-1)S=an+1-1,∴.(4)設S=25+252+253+…+25n,∴25S=252+253+…+25n+1,∴25S-S=25n+1-25,∴.故答案為:.【點睛】本題考查了新定義及其運算,等比數(shù)列等知識,解題的關鍵是理解題意,利用類比思想解決問題.2、(1)(2)【解析】【分析】(1)利用勾股定理先求解再利用等腰直角三角形的性質(zhì)求解可得的坐標,如圖,過作于再證明再利用勾股定理可得答案;(2)分三種情況討論:如圖,把沿對折可得:如圖,取的中點延長至D,使連接如圖,取的中點延長至D,使連接結(jié)合中點坐標公式可得答案.(1)解:∠C=30°,AC=2AB,BC=,解得:解得:如圖,過作于解得:故答案為:(2)解:如圖,把沿對折可得:結(jié)合中點坐標可得:如圖,取的中點延長至D,使連接由如圖,取的中點延長至D,使連接同理可得:綜上:D的坐標為【點睛】本題考查的是坐標與圖形,勾股定理的應用,全等三角形的判定與性質(zhì),中點坐標公式的應用,掌握“全等變換的基本圖形”是解本題的關鍵.3、【解析】【分析】首先根據(jù),,,,再代入計算即可.【詳解】原式==【點睛】本題主要考查了實數(shù)的計算,掌握有理數(shù)的乘方,絕對值的性質(zhì),立方根和平方根是解題的關鍵.4、(1),(-4,-6)(2)①點坐標為或;②存在,點坐標為或【解析】【分析】(1)由求出與的交點坐標,進而得到E,C兩點坐標,然后代入,求解的值,進而可得直線CD的函數(shù)表達式;D點為直線AB與直線CD的交點,聯(lián)立方程組求解即可.(2)①分情況求解:情況一,如圖1,當P在CD上,設,過B作軸交CD于點M,將代入求解得到點M的坐標,根據(jù),求解的值,進而得到點坐標;情況二,如圖2,當P在CE上,設PB與x軸交于G,根據(jù),解得的值,得到點坐標,設直線的解析式為,將B,G點坐標代入求解的值,得直線的解析式,P為直線與直線CD的交點,聯(lián)立方程組求解即可.②分情況求解:情況一,如圖3,當D落在x軸上(記為)時,作DH⊥y軸于點H,BH=OB=3,由翻折可知,,證明,,可得,PB∥x軸,可得P點縱坐標,代入解析式求解即可得點的坐標;情況二,如圖4,當D落在y軸上(記為)時,作PM⊥BD,PN⊥OB,由翻折可知:,證明,有PM=PN,由,,,解得的值,將代入中得的值,即可得到點坐標.(1)解:將代入得∴點B的坐標為將代入得,解得∴點A的坐標為∴由題意知點E,C坐標分別為,將E,C兩點坐標代入得解得:∴直線CD的函數(shù)表達式為;聯(lián)立方程組解得∴D點坐標為;故答案為:;.(2)①解:分情況求解,情況一,如圖1,當P在CD上,設,過B作軸交CD于點M∴將代入中得解得∴點M的坐標為由題意得∴解得∴點坐標為;情況二,如圖2,當P在CE上,設PB與x軸交于G由題意知:解得∴點坐標為設直線的解析式為將B,G點坐標代入得解得∴直線的解析式為聯(lián)立方程組解得∴點P的坐標為;綜上所述,點P的坐標為或.②解:分情況求解:情況一,如圖3,當D落在x軸上(記為)時,作DH⊥y軸于點H∴BH=OB=3由翻折可得:,∵°在和中∴∴∵∴∴°∴PB∥x軸∴P點縱坐標為將代入中得解得∴點的坐標為;情況二,如圖4,當D落在y軸上(記為)時,作PM⊥BD于M,PN⊥OB于N由翻折可得:在和中∴∴PM=PN∵,,∴解得將代入中得解得∴點坐標為;綜上所述,存在點,且點坐標為或.【點睛】本題考查了一次函數(shù)的解析式,翻折的性質(zhì),全等三角形的判定與性質(zhì),解二元一次方程組.解題的關鍵在于對知識的靈活運用.5、(1),;(2)菱形的面積是.【解析】【分析】(1)根據(jù)AB的長結(jié)合“在直角三角形中,30°所對的直角邊等于斜邊的一半”可得出AC的長度,根據(jù)矩形的對角線互相平分可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論