版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
海南省萬寧市中考數(shù)學(xué)每日一練試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,點A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(
)A.160o B.120o C.100o D.80o2、二次函數(shù)的圖像如圖所示,現(xiàn)有以下結(jié)論:(1):(2);(3),(4);(5);其中正確的結(jié)論有(
)A.2個 B.3個 C.4個 D.5個.3、函數(shù)y=ax與y=ax2+a(a≠0)在同一直角坐標(biāo)系中的大致圖象可能是()A. B.C. D.4、如圖1,矩形中,點為的中點,點沿從點運動到點,設(shè),兩點間的距離為,,圖2是點運動時隨變化的關(guān)系圖象,則的長為(
)A. B. C. D.5、已知關(guān)于x的方程有一個根為1,則方程的另一個根為(
)A.-1 B.1 C.2 D.-2二、多選題(5小題,每小題3分,共計15分)1、下列命題中不正確的命題有(
)A.方程kx2-x-2=0是一元二次方程 B.x=1與方程x2=1是同解方程C.方程x2=x與方程x=1是同解方程 D.由(x+1)(x-1)=3可得x+1=3或x-1=32、若為圓內(nèi)接四邊形,則下列哪個選項可能成立(
)A. B.C. D.3、運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論正確的是(
)A.足球距離地面的最大高度為20mB.足球飛行路線的對稱軸是直線C.足球被踢出9s時落地D.足球被踢出1.5s時,距離地面的高度是11m4、古希臘數(shù)學(xué)家歐幾里得在《幾何原本》中記載了用尺規(guī)作某種六邊形的方法,其步驟是:①在⊙O上任取一點A,連接AO并延長交⊙O于點B;②以點B為圓心,BO為半徑作圓弧分別交⊙O于C,D兩點;③連接CO,DO并延長分別交⊙O于點E,F(xiàn);④順次連接BC,CF,F(xiàn)A,AE,ED,DB,得到六邊形AFCBDE.連接AD,EF,交于點G,則下列結(jié)論正確的是.A.△AOE的內(nèi)心與外心都是點G B.∠FGA=∠FOAC.點G是線段EF的三等分點 D.EF=AF5、已知A、B兩點的坐標(biāo)分別是(-2,3)和(2,3),則下面四個結(jié)論正確的有(
)A.A、B關(guān)于x軸對稱; B.A、B關(guān)于y軸對稱;C.A、B關(guān)于原點對稱; D.若A、B之間的距離為4第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、寫出一個一元二次方程,使它有兩個不相等的實數(shù)根______.2、不透明袋子中裝有10個球,其中有3個黃球、5個紅球、2個黑球,這些球除顏色外無其他差別.從袋子中隨機取出1個球,則它是黃球的概率是_______.3、若點A(m,5)與點B(-4,n)關(guān)于原點成中心對稱,則m+n=________.4、如圖,把△ABC繞點C順時針旋轉(zhuǎn)25°,得到△A′B′C,A′B′交AC于點D,若∠A′DC=90°,則∠A度數(shù)為___________.5、菱形的一條對角線長為8,其邊長是方程x2-8x+15=0的一個根,則該菱形的面積為________.四、解答題(6小題,每小題10分,共計60分)1、如圖,AB是的直徑,弦于點E.若,,求弦CD.2、如圖,在△ABC中,∠CAB=70°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AB'C′的位置,使得CC′AB,求∠CC'A的度數(shù).3、已知關(guān)于的二次函數(shù).(1)求證:不論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點;(2)若,兩點在該二次函數(shù)的圖象上,直接寫出與的大小關(guān)系;(3)若將拋物線沿軸翻折得到新拋物線,當(dāng)時,新拋物線對應(yīng)的函數(shù)有最小值3,求的值.4、解方程:(1)x2-x-2=0;(2)3x(x-2)=2-x.5、如圖①已知拋物線的圖象與軸交于、兩點(在的左側(cè)),與的正半軸交于點,連結(jié);二次函數(shù)的對稱軸與軸的交點.(1)拋物線的對稱軸與軸的交點坐標(biāo)為,點的坐標(biāo)為_____(2)若以為圓心的圓與軸和直線都相切,試求出拋物線的解析式:(3)在(2)的條件下,如圖②是的正半軸上一點,過點作軸的平行線,與直線交于點與拋物線交于點,連結(jié),將沿翻折,的對應(yīng)點為’,在圖②中探究:是否存在點,使得’恰好落在軸上?若存在,請求出的坐標(biāo):若不存在,請說明理由.6、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。(1)當(dāng)直線l與這個新圖象有且只有一個公共點時,d=;(2)當(dāng)直線l與這個新圖象有且只有三個公共點時,求d的值;(3)當(dāng)直線l與這個新圖象有且只有兩個公共點時,求d的取值范圍;(4)當(dāng)直線l與這個新圖象有四個公共點時,直接寫出d的取值范圍.-參考答案-一、單選題1、A【解析】【分析】在⊙O取點,連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對的圓心角是它所對的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點,連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對的圓心角是它所對的圓周角的2倍,掌握相關(guān)知識點是解題的關(guān)鍵.2、C【解析】【分析】由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.【詳解】解:(1)∵函數(shù)開口向下,∴a<0,∵對稱軸在y軸的右邊,∴,∴b>0,故命題正確;(2)∵a<0,b>0,c>0,∴abc<0,故命題正確;(3)∵當(dāng)x=-1時,y<0,∴a-b+c<0,故命題錯誤;(4)∵當(dāng)x=1時,y>0,∴a+b+c>0,故命題正確;(5)∵拋物線與x軸于兩個交點,∴b2-4ac>0,故命題正確;故選C.【考點】本題考查了二次函數(shù)圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運用.3、D【解析】【分析】先根據(jù)一次函數(shù)的性質(zhì)確定a>0與a<0兩種情況分類討論拋物線的頂點位置即可得出結(jié)論.【詳解】解:函數(shù)y=ax與y=ax2+a(a≠0)A.函數(shù)y=ax圖形可得a<0,則y=ax2+a(a≠0)開口方向向下正確,當(dāng)頂點坐標(biāo)為(0,a),應(yīng)交于y軸負(fù)半軸,而不是交y軸正半軸,故選項A不正確;
B.函數(shù)y=ax圖形可得a<0,則y=ax2+a(a≠0)開口方向向下正確,當(dāng)頂點坐標(biāo)為(0,a),應(yīng)交于y軸負(fù)半軸,而不是在坐標(biāo)原點上,故選項B不正確;
C.函數(shù)y=ax圖形可得a>0,則y=ax2+a(a≠0)開口方向向上正確,當(dāng)頂點坐標(biāo)為(0,a),應(yīng)交于y軸正半軸,故選項C不正確;
D.函數(shù)y=ax圖形可得a<0,則y=ax2+a(a≠0)開口方向向上正確,當(dāng)頂點坐標(biāo)為(0,a),應(yīng)交于y軸正半軸正確,故選項D正確;
故選D.【考點】本題考查的知識點是一次函數(shù)的圖象與二次函數(shù)的圖象,理解掌握函數(shù)圖象的性質(zhì)是解此題的關(guān)鍵.4、C【解析】【分析】先利用圖2得出當(dāng)P點位于B點時和當(dāng)P點位于E點時的情況,得到AB和BE之間的關(guān)系以及,再利用勾股定理求解即可得到BE的值,最后利用中點定義得到BC的值.【詳解】解:由圖2可知,當(dāng)P點位于B點時,,即,當(dāng)P點位于E點時,,即,則,∵,∴,即,∵∴,∵點為的中點,∴,故選:C.【考點】本題考查了學(xué)生對函數(shù)圖象的理解與應(yīng)用,涉及到了勾股定理、解一元二次方程、中點的定義等內(nèi)容,解決本題的關(guān)鍵是能正確理解題意,能從圖象中提取相關(guān)信息,能利用勾股定理建立方程等,本題蘊含了數(shù)形結(jié)合的思想方法.5、C【解析】【分析】根據(jù)根與系數(shù)的關(guān)系列出關(guān)于另一根t的方程,解方程即可.【詳解】解:設(shè)關(guān)于x的方程的另一個根為x=t,∴1+t=3,解得,t=2故選:C.【考點】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=?,x1x2=.二、多選題1、ABCD【解析】【分析】根據(jù)方程、方程的解的有關(guān)定義以及解方程等知識點逐項判斷即可.【詳解】解:A.方程kx2?x?2=0當(dāng)k≠0時才是一元二次方程,故錯誤;B.x=1與方程x2=1不是同解方程,故錯誤;C.方程x2=x與方程x=1不是同解方程,故錯誤;D.由(x+1)(x?1)=3可得x=±2,故錯誤.故選:ABCD.【考點】本題主要考查了一元二次方程的定義、解一元二次方程、同解方程等知識點,掌握解一元二次方程的方法是解答本題的關(guān)鍵.2、BD【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠A+∠C=∠B+∠D=180°,再逐個判斷即可.【詳解】解:∵四邊形ABCD是圓內(nèi)接四邊形,∴∠A+∠C=180°,∠B+∠D=180°,∴∠A+∠C=∠B+∠D,A.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;B.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;C.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;D.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;故選:BD.【考點】本題考查了圓周角定理和圓內(nèi)接四邊形的性質(zhì),注意:圓內(nèi)接四邊形的對角互補.3、BC【解析】【分析】由題意,拋物線經(jīng)過(0,0),(9,0),所以可以假設(shè)拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯誤,∴拋物線的對稱軸t=4.5,故B正確,∵t=9時,h=0,∴足球被踢出9s時落地,故C正確,∵t=1.5時,h=11.25,故D錯誤.∴正確的有②③,故選:BC【考點】本題考查二次函數(shù)的應(yīng)用、求出拋物線的解析式是解題的關(guān)鍵,屬于中考??碱}型.4、ABC【解析】【分析】證明△AOE是等邊三角形,EF⊥OA,AD⊥OE,可判斷A;.證明∠AGF=∠AOF=60°,可判斷B;證明FG=2GE,可判斷C;證明EF=AF,可判斷D.【詳解】解:如圖,在正六邊形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等邊三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四邊形AEOF,四邊形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的內(nèi)心與外心都是點G,故A正確,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正確,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴點G是線段EF的三等分點,故C正確,∵AF=AE,∠FAE=120°,∴EF=AF,故D錯誤,故答案為:ABC.【考點】本題考查作圖-復(fù)雜作圖,等邊三角形的判定和性質(zhì),菱形的判定和性質(zhì),三角形的內(nèi)心,外心等知識,解題的關(guān)鍵是證明四邊形AEOF,四邊形AODE都是菱形.5、BD【解析】【分析】根據(jù)點坐標(biāo)關(guān)于原點對稱、軸對稱的特點,求出對應(yīng)點坐標(biāo)即可.【詳解】點A(-2,3)關(guān)于x軸對稱的點為(-2,-3),故A錯誤點A(-2,3)關(guān)于y軸對稱的點為(2,3),故B正確點A(-2,3)關(guān)于原點對稱的點為(2,-3),故C錯誤點A、點B的縱坐標(biāo)相同,故A、B之間的距離為,故D正確故選BD【考點】本題考查了點坐標(biāo)關(guān)于x,y軸對稱,關(guān)于原點中心對稱的特點,以及兩點間距離公式,熟悉對應(yīng)知識點是解決本題的關(guān)鍵.三、填空題1、x2+x﹣1=0(答案不唯一)【解析】【分析】這是一道開放自主題,只要寫出的方程的Δ>0就可以了.【詳解】解:比如a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=1+4=5>0,∴方程為x2+x﹣1=0.故答案為:x2+x﹣1=0(答案不唯一)【考點】本題考查了一元二次方程根的判別式,掌握“根的判別式大于0,方程有兩個不相等的實數(shù)根”是解題的關(guān)鍵.2、【解析】【分析】用黃球的個數(shù)除以總球的個數(shù)即可得出取出黃球的概率.【詳解】解:∵不透明的袋子中裝有10個球,其中有3個黃球、5個紅球、2個黑球,∴從袋子中隨機取出1個球,則它是黃球的概率為;故答案為:.【考點】此題考查了概率公式,明確概率的意義是解答問題的關(guān)鍵,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.3、【解析】【分析】根據(jù)關(guān)于原點對稱的點的坐標(biāo)特征:關(guān)于原點對稱的點,橫縱坐標(biāo)都互為相反數(shù),進(jìn)行求解即可.【詳解】解:∵點A(m,5)與點B(-4,n)關(guān)于原點成中心對稱,∴m=4,n=-5,∴m+n=-5+4=-1,故答案為:-1.【考點】本題主要考查了關(guān)于原點對稱點的坐標(biāo)特征,代數(shù)式求值,熟知關(guān)于原點對稱的點的坐標(biāo)特征是解題的關(guān)鍵.4、65°【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),可得知,從而求得的度數(shù),又因為的對應(yīng)角是,即可求出的度數(shù).【詳解】繞著點時針旋轉(zhuǎn),得到,的對應(yīng)角是故答案為:.【考點】此題考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是正確確定對應(yīng)角.5、24【解析】【分析】利用因式分解法解方程得到x1=3,x2=5,再根據(jù)菱形的性質(zhì)得到菱形的邊長為5,利用勾股定理計算出菱形的另一條對角線長,然后根據(jù)菱形的面積公式計算.【詳解】解:x2-8x+15=0,(x-3)(x-5)=0,x-3=0或x-5=0,∴x1=3,x2=5,∵菱形一條對角線長為8,∴菱形的邊長為5,∵菱形的另一條對角線長=2×=6,∴菱形的面積=×6×8=24.故答案為:24.【考點】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了菱形的性質(zhì).四、解答題1、【解析】【分析】連接OC,如圖,根據(jù)垂徑定理得到CE=DE,然后利用勾股定理計算出CE,從而得到CD的長.【詳解】解:連接OC,如圖,∵AB為直徑,弦CD⊥AB,∴CE=DE,∵AB=8,∴OA=OC=4,∴OE=OA-AE=4-1=3,在Rt△OCE中,CE=,∴CD=2CE=.【考點】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱斯垂啥ɡ恚?、∠CC'A=70°【解析】【分析】先根據(jù)平行線的性質(zhì),由得∠AC′C=∠CAB=70°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得AC=AC′,∠BAB′=∠CAC′,于是根據(jù)等腰三角形的性質(zhì)有∠ACC′=∠AC′C=70°.【詳解】∵,∴∠ACC′=∠CAB=70°,∵△ABC繞點A旋轉(zhuǎn)到△AB′C′的位置,∴AC=AC′,∠BAB′=∠CAC′,在△ACC′中,∵AC=AC′∴∠ACC′=∠CC'A=70°,【考點】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.3、(1)見解析(2)(3)的值為1或-5【解析】【分析】(1)計算判別式的值,得到,即可判定;(2)計算二次函數(shù)的對稱軸為:直線,利用當(dāng)拋物線開口向上時,誰離對稱軸遠(yuǎn)誰大判斷即可;(3)先得到拋物線沿y軸翻折后的函數(shù)關(guān)系式,再利用對稱軸與取值范圍的位置分類討論即可.(1)證明:令,則∴∴不論為何實數(shù),方程有兩個不相等的實數(shù)根∴無論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點(2)解:二次函數(shù)的對稱軸為:直線∵,拋物線開口向上∴拋物線上的點離對稱軸越遠(yuǎn)對應(yīng)的函數(shù)值越大∵∴M點到對稱軸的距離為:1N點到對稱軸的距離為:2∴(3)解:∵拋物線∴沿軸翻折后的函數(shù)解析式為∴該拋物線的對稱軸為直線①若,即,則當(dāng)時,有最小值∴解得,∵∴②若,即,則當(dāng)時,有最小值-1不合題意,舍去③若,,則當(dāng)時,有最小值∴解得,∵∴綜上,的值為1或-5【考點】本題考查了拋物線與x軸的交點以及二次函數(shù)的最值問題,利用一元二次方程根的判別式判斷拋物線與x軸的交點情況;熟練掌握二次函數(shù)的最值情況、根據(jù)對稱軸與取值范圍的位置關(guān)系來確定二次函數(shù)的最值是解本題的關(guān)鍵.4、(1)x1=2,x2=-1(2)x1=-,x2=2【解析】【分析】(1)利用因式分解法解方程;(2)利用因式分解法解方程;(1)解:x2-x-2=0,(x-2)(x+1)=0,x-2=0或x+1=0,x1=2,x2=-1.(2)解:3x(x-2)=2-x,3x(x-2)+(x-2)=0,(3x+1)(x-2)=0,3x+1=0或x-2=0,x1=-,x2=2.【考點】本題考查了因式分解法解一元二次方程:將方程的右邊化為零,把方程的左邊分解為兩個一次因式的積,令每個因式分別為零,解這兩個一元一次方程,它們的解就是原方程的解.5、(1);(2);(3)【解析】【分析】(1)由拋物線的對稱軸為直線,即可求得點E的坐標(biāo);在y=ax2﹣3ax﹣4a(a<0)令y=0可得關(guān)于x的方程ax2﹣3ax﹣4a=0,解方程即可求得點A的坐標(biāo);(2)如圖1,設(shè)⊙E與直線BC相切于點D,連接DE,則DE⊥BC,結(jié)合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,這樣由tan∠OBC=即可列出關(guān)于a的方程,解方程求得a的值即可得到拋物線的解析式;(3)由折疊的性質(zhì)和MN∥y軸可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由點B的坐標(biāo)為(4,0),點C的坐標(biāo)為(0,3)可得線段BC=5,直線BC的解析式為y=﹣x+3,由此即可得到M、N的坐標(biāo)分別為(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,這樣由sin∠BCO=即可解得CM=m,然后分點N在直線BC的上方和下方兩種情況用含m的代數(shù)式表達(dá)出MN的長度,結(jié)合MN=CM即可列出關(guān)于m的方程,解方程即可求得對應(yīng)的m的值,從而得到對應(yīng)的點Q的坐標(biāo).【詳解】解:(1)∵對稱軸x=,∴點E坐標(biāo)(,0),令y=0,則有ax2﹣3ax﹣4a=0,∴x=﹣1或4,∴點A坐標(biāo)(﹣1,0).故答案分別為(,0),(﹣1,0).(2)如圖①中,設(shè)⊙E與直線BC相切于點D,連接DE,則DE⊥BC,∵DE=OE=,EB=,OC=﹣4a,∴DB=,∵tan∠OBC=,∴,解得a=,∴拋物線解析式為y=.(3)如圖②中,由題意∠M′CN=∠NCB,∵M(jìn)N∥OM′,∴∠M′CN=∠CNM,∴MN=CM,∵點B的坐標(biāo)為(4,0),點C的坐標(biāo)為(0,3),∴直線BC解析式為y=﹣x+3,BC=5,∴M(m,﹣m+3),N(m,﹣m2+m+3),作MF⊥OC于F,∵sin∠BCO=,∴,∴CM=m,①當(dāng)N在直線BC上方時,﹣x2+x+3﹣(﹣x+3)=m,解得:m=或0(舍棄),∴Q1(,0).②當(dāng)N在直線BC下方時,(﹣m+3)﹣(﹣m2+m+3)=m,解得m=或0(舍棄),∴Q2(,0),綜上所述:點Q坐標(biāo)為(,0)或(,0).【考點】本題是一道二次函數(shù)與幾何及銳角三角函數(shù)綜合的題,解題的要點是:(1)熟悉二次函數(shù)的對稱軸方程及二次函數(shù)與一元二次方程的關(guān)系是解第1小題的關(guān)鍵;(2)由切線的性質(zhì)得到DE⊥BC,從而得到tan∠OBC=,這樣結(jié)合已知條件求出a的值是解第2小題的關(guān)鍵;(3)過點M作MF⊥y軸于點F,這樣由sin∠BCO=變形把MC用含m的代數(shù)式表達(dá)出來,再由折疊的性質(zhì)和MN∥y軸證得MN
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職(新能源汽車運用與維修)轉(zhuǎn)向系統(tǒng)檢測試題及答案
- 2025年中職機電一體化技術(shù)(機電工程實務(wù))試題及答案
- 2026屆四川南充市高考一診地理試卷試題(含答案詳解)
- 深度解析(2026)《GBT 18311.5-2003纖維光學(xué)互連器件和無源器件 基本試驗和測量程序 第3-5部分檢查和測量 衰減對波長的依賴性》
- 深度解析(2026)《GBT 17980.126-2004農(nóng)藥 田間藥效試驗準(zhǔn)則(二) 第126部分除草劑防治花生田雜草》
- 深度解析(2026)《GBT 17980.11-2000農(nóng)藥 田間藥效試驗準(zhǔn)則(一) 殺螨劑防治桔全爪螨》
- 深度解析(2026)GBT 17771-2010土方機械 落物保護(hù)結(jié)構(gòu) 試驗室試驗和性能要求
- 深度解析(2026)《GBT 17626.18-2016電磁兼容 試驗和測量技術(shù) 阻尼振蕩波抗擾度試驗》(2026年)深度解析
- 共享設(shè)施維護(hù)保養(yǎng)操作規(guī)程
- 江西楓林涉外經(jīng)貿(mào)職業(yè)學(xué)院《微生物與寄生蟲學(xué)》2025-2026學(xué)年第一學(xué)期期末試卷
- 西漢陪同口譯 I知到智慧樹章節(jié)測試課后答案2024年秋上海杉達(dá)學(xué)院
- 新舊《預(yù)包裝食品標(biāo)簽通則》對比(中文簡體)
- DL∕T 1053-2017 電能質(zhì)量技術(shù)監(jiān)督規(guī)程
- NB-T20319-2014壓水堆核電廠技術(shù)規(guī)格書編制準(zhǔn)則
- 起重機維護(hù)保養(yǎng)記錄表
- DB4409-T 48-2023 三叉苦種植技術(shù)規(guī)范
- 10千伏及以下線損管理題庫附答案
- 關(guān)于食品專業(yè)實習(xí)報告(5篇)
- 蛋糕店充值卡合同范本
- 《美國和巴西》復(fù)習(xí)課
- 模切機個人工作總結(jié)
評論
0/150
提交評論