版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省臺山市中考數(shù)學試題預(yù)測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、以原點O為圓心的圓交x軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內(nèi)⊙O上的一點,若∠DAB=25°,則∠OCD=(
).A.50° B.40° C.70° D.30°2、關(guān)于的方程有兩個不相等的實根、,若,則的最大值是(
)A.1 B. C. D.23、對于拋物線,下列說法正確的是()A.拋物線開口向上B.當時,y隨x增大而減小C.函數(shù)最小值為﹣2D.頂點坐標為(1,﹣2)4、如圖,⊙O的半徑為5cm,直線l到點O的距離OM=3cm,點A在l上,AM=3.8cm,則點A與⊙O的位置關(guān)系是(
)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能5、點A(x,y)在第二象限內(nèi),且│x│=2,│y│=3,則點A關(guān)于原點對稱的點的坐標為(
)A.(-2,3) B.(2,-3) C.(-3,2) D.(3,-2)二、多選題(5小題,每小題3分,共計15分)1、下列圖案中,是中心對稱圖形的是(
)A. B. C. D.2、如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣4,0),其對稱軸為直線x=﹣1,下列結(jié)論正確的是(
)A.a(chǎn)+b+c<0B.a(chǎn)bc<0C.2a+b=0D.若P(﹣6,y1),Q(m,y2)是拋物線上兩點,且y1>y2,則﹣6<m<43、已知:如圖,△ABC中,∠A=60°,BC為定長,以BC為直徑的⊙O分別交AB、AC于點D、E.連接DE、OE.下列結(jié)論中正確的結(jié)論是()A.BC=2DE B.D點到OE的距離不變 C.BD+CE=2DE D.AE為外接圓的切線4、已知二次函數(shù)y=x2-4x+a,下列說法正確的是()A.當x<1時,y隨x的增大而減小B.若圖象與x軸有交點,則a≥-4C.當a=3時,不等式x2-4x+a<0的解集是1<x<3D.若將圖象向上平移1個單位,再向左平移3個單位后過點(1,-2),則a=-35、下列說法中,不正確的是()A.三點確定一個圓B.三角形有且只有一個外接圓C.圓有且只有一個內(nèi)接三角形D.相等的圓心角所對的弧相等第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、在平面直角坐標系中,已知和是拋物線上的兩點,將拋物線的圖象向上平移n(n是正整數(shù))個單位,使平移后的圖象與x軸沒有交點,則n的最小值為_____.2、如圖,拋物線y=﹣x2+x+2與x軸相交于A、B兩點,與y軸相交于點C,點D在拋物線上,且CD∥AB.AD與y軸相交于點E,過點E的直線PQ平行于x軸,與拋物線相交于P,Q兩點,則線段PQ的長為_____.3、如果關(guān)于的一元二次方程有實數(shù)根,那么的取值范圍是___.4、二次函數(shù)y=ax2+bx+c(a≠0)圖象上部分點的坐標(x,y)對應(yīng)值列表如下:x…-3-2-101…y…-4-3-4-7-12…則該圖象的對稱軸是___________5、準備在一塊長為30米,寬為24米的長方形花圃內(nèi)修建四條寬度相等,且與各邊垂直的小路,(如圖所示)四條小路圍成的中間部分恰好是一個正方形,且邊長是小路寬度的4倍,若四條小路所占面積為80平方米,則小路的寬度為_____米.四、解答題(6小題,每小題10分,共計60分)1、已知關(guān)于x的一元二次方程有兩個相等的實數(shù)根,求的值.2、如圖,方格中,每個小正方形的邊長都是單位1,△ABC的位置如圖.(1)畫出將△ABC向右平移2個單位得到的△A1B1C1;(2)畫出將△ABC繞點O順時針方向旋轉(zhuǎn)90°得到的△A2B2C2;(3)寫出C2點的坐標.3、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以2cm/s的速度運動.P、Q分別從點A、C同時出發(fā),當其中一個動點到達端點時,另一個動點也隨之停止運動,設(shè)運動時間為t(s).(1)當t為何值時,四邊形PQCD為平行四邊形?(2)當t為何值時,PQ與⊙O相切?4、正方形ABCD的四個頂點都在⊙O上,E是⊙O上的一點.(1)如圖①,若點E在上,F(xiàn)是DE上的一點,DF=BE.求證:△ADF≌△ABE;(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關(guān)系:DE-BE=AE.請說明理由;(3)如圖②,若點E在上.連接DE,CE,已知BC=5,BE=1,求DE及CE的長.5、如圖,已知點在上,點在外,求作一個圓,使它經(jīng)過點,并且與相切于點.(要求寫出作法,不要求證明)6、頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經(jīng)過點C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設(shè)點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;(3)點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應(yīng)點F恰好落在y軸上時,請直接寫出點P的坐標.-參考答案-一、單選題1、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質(zhì)求出∠OCD=∠ODC,根據(jù)三角形內(nèi)角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點】本題考查了圓周角定理,等腰三角形性質(zhì),三角形內(nèi)角和定理的應(yīng)用,主要考查學生的推理能力,題目比較典型,難度適中.2、D【解析】【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系,求得兩根之和和兩根之積,再根據(jù)兩根關(guān)系,求得系數(shù)的關(guān)系,代入代數(shù)式,配方法化簡求值即可.【詳解】解:由方程有兩個不相等的實根、可得,,,∵,可得,,即化簡得則故最大值為故選D【考點】此題考查了一元二次方程根與系數(shù)的關(guān)系,涉及了配方法求解代數(shù)式的最大值,根據(jù)一元二次方程根與系數(shù)的關(guān)系得到系數(shù)的關(guān)系是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)二次函數(shù)圖象的性質(zhì)對各項進行分析判斷即可.【詳解】解:拋物線解析式可知,A、由于,故拋物線開口方向向下,選項不符合題意;B、拋物線對稱軸為,結(jié)合其開口方向向下,可知當時,y隨x增大而減小,選項說法正確,符合題意;C、由于拋物線開口方向向下,故函數(shù)有最大值,且最大值為-2,選項不符合題意;D、拋物線頂點坐標為(-1,-2),選項不符合題意.故選:B.【考點】本題主要考查了二次函數(shù)的性質(zhì),解題關(guān)鍵是熟練運用拋物線的開口方向、對稱軸、頂點坐標以及二次函數(shù)圖象的增減性解題.4、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點A與⊙O的位置關(guān)系是:點A在⊙O內(nèi).故選A.5、B【解析】【分析】根據(jù)A(x,y)在第二象限內(nèi)可以判斷x,y的符號,再根據(jù)|x|=2,|y|=3就可以確定點A的坐標,進而確定點A關(guān)于原點的對稱點的坐標.【詳解】∵A(x,y)在第二象限內(nèi),∴x<0y>0,又∵|x|=2,|y|=3,∴x=-2,y=3,∴點A關(guān)于原點的對稱點的坐標是(2,-3).故選:B.【考點】本題考查了關(guān)于原點對稱的點的坐標,由點所在的象限能判斷出坐標的符號,同時考查了關(guān)于原點對稱的點坐標之間的關(guān)系,難度一般.二、多選題1、ABD【解析】【分析】在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,這個圖形就是中心對稱圖形,根據(jù)定義判斷即可.【詳解】、是中心對稱圖形,選項正確;B、是中心對稱圖形,選項正確;C、不是中心對稱圖形,選項錯誤;D、是中心對稱圖形,選項正確.故選:ABD【考點】本題考查中心對稱圖形的定義,牢記定義是解題關(guān)鍵.2、ABD【解析】【分析】根據(jù)題意可得點A(﹣4,0)關(guān)于對稱軸的對稱點,從而得到當時,,再由,可得在對稱軸右側(cè)隨的增大而增大,從而得到當時,;根據(jù)圖象可得,,可得;再由,可得;然后根據(jù)P(﹣6,y1)關(guān)于對稱軸的對稱點,可得當y1>y2時,﹣6<m<4,即可求解.【詳解】解:∵二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣4,0),其對稱軸為直線x=﹣1,∴點A(﹣4,0)關(guān)于對稱軸的對稱點,即當時,,∵拋物線開口向上,∴,∴在對稱軸右側(cè)隨的增大而增大,∴當時,,故A正確;∵拋物線與交于負半軸,∴,∵對稱軸為直線x=﹣1,,∴,即,∴,故B正確;∵,∴,故C錯誤;∵P(﹣6,y1)關(guān)于對稱軸的對稱點,∴當y1>y2時,﹣6<m<4,故D正確.故選:ABD【考點】本題主要考查了二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),并利用數(shù)形結(jié)合思想解答是解題的關(guān)鍵.3、AB【解析】【分析】連接OD,可證明△ODE是等邊三角形,所以A,B正確;通過舉反例:當重合,時,可得:<可得C不一定成立,根據(jù)切線的定義,可得D不正確,從而可得答案.【詳解】解:連接OD,∵∠A=60°∴∠B+∠C=120°,的度數(shù)為∵的度數(shù)為∴的度數(shù)為∴∠DOE=60°,又OD=OE,∴△ODE是等邊三角形,即所以A正確,符合題意;則D到OE的長度是等邊△ODE的高,而等邊的邊長等于圓的半徑,則高一定是一個定值,因而B正確,符合題意;如圖:當重合,時,則為的切線,同理可得:此時則為的直徑,>此時<所以C不符合題意;與的外接圓有兩個交點,不是外接圓的切線,所以D不符合題意;故選:AB.【考點】本題考查的是圓的基本性質(zhì),圓弧的度數(shù)與其所對的圓周角的度數(shù)之間的關(guān)系,切線的概念的理解,等邊三角形的判定與性質(zhì),靈活運用以上知識解題是解題的關(guān)鍵.4、ACD【解析】【分析】A、此函數(shù)在對稱軸的左邊是隨著x的增大而減小,在右邊是隨x增大而增大,據(jù)此作答;B、和x軸有交點,就說明△≥0,易求a的取值;C、解一元二次不等式即可;D、根據(jù)左加右減,上加下減作答即可.【詳解】解:∵y=x2?4x+a,∴對稱軸:直線x=2,A、當x<1時,y隨x的增大而減小,故該選項正確;B、當Δ=b2?4ac=16?4a≥0,即a≤4時,二次函數(shù)和x軸有交點,該選項錯誤;C、當a=3時,則不等式x2?4x+3<0,即(x-3)(x-1)<0,∴不等式的解集是1<x<3,故該選項正確;D、y=x2?4x+a配方后是y=(x?2)2+a?4,向上平移1個單位,再向左平移3個單位后,函數(shù)解析式是y=(x-1)2+a?3,把(1,?2)代入函數(shù)解析式,易求a=?3,故該選項正確.故選:ACD.【考點】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是掌握有關(guān)二次函數(shù)的增減性、與x軸交點的條件、與一元二次不等式的關(guān)系、上下左右平移的規(guī)律.5、ACD【解析】【分析】根據(jù)不共線三點確定一個圓即可判斷A,B,C選項,根據(jù)同圓或等圓中,相等的圓心角所對的弧相等即可判斷D選項【詳解】不共線三點確定一個圓,故A選項不正確,B選項正確;一個圓上可以找出無數(shù)個不共線的三個點,即可構(gòu)成無數(shù)個三角形,這些三角形都是這個圓的內(nèi)接三角形圓有無數(shù)個內(nèi)接三角形;故C選項不正確;同圓或等圓中,相等的圓心角所對的弧相等,故D選項不正確.故選ACD.【考點】本題考查了圓的內(nèi)接三角形的定義,不共線三點確定一個圓,同圓或等圓中,相等的圓心角所對的弧相等,理解圓的相關(guān)性質(zhì)是解題的關(guān)鍵.三、填空題1、4【解析】【分析】通過A、B兩點得出對稱軸,再根據(jù)對稱軸公式算出b,由此可得出二次函數(shù)表達式,從而算出最小值即可推出n的最小值.【詳解】∵A、B的縱坐標一樣,∴A、B是對稱的兩點,∴對稱軸,即,∴b=-4.∴拋物線解析式為:.∴拋物線頂點(2,-3).∴滿足題意n的最小值為4,故答案為:4.【考點】本題考查二次函數(shù)對稱軸的性質(zhì),頂點式的變形及拋物線的平移,關(guān)鍵在于根據(jù)對稱軸的性質(zhì)從題意中判斷出對稱軸.2、2【解析】【分析】利用二次函數(shù)圖象上點的坐標特征可求出點A,B,C,D的坐標,由點A,D的坐標,利用待定系數(shù)法可求出直線AD的解析式,利用一次函數(shù)圖象上點的坐標特征可求出點E的坐標,再利用二次函數(shù)圖象上點的坐標特征可得出點P,Q的坐標,進而可求出線段PQ的長.【詳解】解:當y=0時,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴點A的坐標為(﹣2,0);當x=0時,y=﹣x2+x+2=2,∴點C的坐標為(0,2);當y=2時,﹣x2+x+2=2,解得:x1=0,x2=2,∴點D的坐標為(2,2).設(shè)直線AD的解析式為y=kx+b(k≠0),將A(﹣2,0),D(2,2)代入y=kx+b,得:解得:∴直線AD的解析式為y=x+1.當x=0時,y=x+1=1,∴點E的坐標為(0,1).當y=1時,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴點P的坐標為(1﹣,1),點Q的坐標為(1+,1),∴PQ=1+﹣(1﹣)=2.故答案為:2.【考點】本題考查了拋物線與x軸的交點、二次函數(shù)圖象上點的坐標特征、待定系數(shù)法求一次函數(shù)解析式以及一次函數(shù)圖象上點的坐標特征,利用二次函數(shù)圖象上點的坐標特征求出點P,Q的坐標是解題的關(guān)鍵.3、【解析】【分析】由一元二次方程根與系數(shù)的關(guān)鍵可得:從而列不等式可得答案.【詳解】解:關(guān)于的一元二次方程有實數(shù)根,故答案為:【考點】本題考查的是一元二次方程根的判別式,掌握一元二次方程根的判別式是解題的關(guān)鍵.4、【解析】【分析】根據(jù)二次函數(shù)的圖象具有對稱性和表格中的數(shù)據(jù),可以計算出該函數(shù)圖象的對稱軸.【詳解】解:由表格可得,當x取-3和-1時,y值相等,該函數(shù)圖象的對稱軸為直線,故答案為:.【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是明確題意,利用二次函數(shù)的對稱性解答.5、1.25【解析】【分析】設(shè)小路的寬度為,根據(jù)圖形所示,用表示出小路的面積,由小路面積為80平方米,求出未知數(shù).【詳解】設(shè)小路的寬度為,由題意和圖示可知,小路的面積為,解一元二次方程,由,可得.【考點】本題綜合考查一元二次方程的列法和求解,這類實際應(yīng)用的題目,關(guān)鍵是要結(jié)合題意和圖示,列對方程.四、解答題1、4【解析】【分析】先根據(jù)一元二次方程根的判別式可得,從而可得,再代入計算即可得.【詳解】解:∵關(guān)于的一元二次方程有兩個相等的實數(shù)根,∴此方程根的判別式,即,則,,,.【考點】本題考查了一元二次方程根的判別式、代數(shù)式求值,熟練掌握一元二次方程根的判別式是解題關(guān)鍵.2、(1)見解析;(2)見解析;(3)C2(2,3).【解析】【分析】(1)根據(jù)平移的方法將三點向右平移2個單位得到,然后將三個點連起來即可;(2)根據(jù)旋轉(zhuǎn)的方法將三點繞點O順時針方向旋轉(zhuǎn)90°得到,然后將三個點連起來即可;(3)根據(jù)(2)中描出的點C2的位置即可寫出C2點的坐標.【詳解】解:(1)如圖所示,△A1B1C1即為所求,(2)如圖所示,△A2B2C2即為所求,(3)由(2)中點C2的位置可得,C2點的坐標為(2,3).【考點】此題考查了平面直角坐標系中的平移和旋轉(zhuǎn)變換作圖以及求點的坐標,解題的關(guān)鍵是熟練掌握平移和旋轉(zhuǎn)變換的方法.3、(1)當時,四邊形PQCD為平行四邊形;(2)當t=2秒時,PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設(shè)PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當時,四邊形PQCD為平行四邊形;(2)設(shè)PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB為⊙O的直徑,∠ABC=∠DAB=90°,∴AD、BC為⊙O的切線,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD邊運動的時間為秒.∵t=9>8,∴t=9(舍去),∴當t=2秒時,PQ與⊙O相切.【考點】本題主要考查了切線長定理,矩形的性質(zhì)與判定,勾股定理,平行四邊形的性質(zhì)等等,解題的關(guān)鍵在于能夠熟練掌握切線長定理.4、(1)證明見解析;(2)理由見解析;(3)DE=7,CE=【解析】【分析】(1)根據(jù)正方形的性質(zhì),得AB=AD;根據(jù)圓周角的性質(zhì),得,結(jié)合DF=BE,即可完成證明;(2)由(1)結(jié)論得AF=AE,;結(jié)合∠BAD=90°,得∠EAF=90°,從而得到△EAF是等腰直角三角形,即EF=AE;最后結(jié)合DE-DF=EF,從而得到答案;(3)連接BD,將△CBE繞點C順時針旋轉(zhuǎn)90°至△CDH;結(jié)合題意,得∠CBE+∠CDE=180°,從而得到E,D,H三點共線;根據(jù)BC=CD,得,從而推導(dǎo)得∠BEC=∠DEC=45°,即△CEH是等腰直角三角形;再根據(jù)勾股定理的性質(zhì)計算,即可得到答案.【詳解】(1)如圖,,,,在正方形ABCD中,AB=AD在△ADF和△ABE中∴△ADF≌△ABE(SAS);(2)由(1)結(jié)論得:△ADF≌△ABE∴AF=AE,∠3=∠4正方形ABCD中,∠BAD=90°∴∠BAF+∠3=90°∴∠BAF+∠4=90°∴∠EAF=90°∴△EAF是等腰直角三角形∴EF2=AE2+AF2∴EF2=2AE2∴EF=AE即DE-DF=AE∴DE-BE=AE;(3)連接BD,將△CBE繞點C順時針旋轉(zhuǎn)90°至△CDH∵四邊形BCDE內(nèi)接于圓∴∠CBE+∠CDE=180°∴E,D,H三點共線在正方形ABCD中,∠BAD=90°∴∠BED=∠BAD=90°∵BC=CD∴∴∠BEC=∠DEC=45°∴△CEH是等腰直角三角形在Rt△BCD中,由勾股定理得BD=BC=5在Rt△BDE中,由勾股定理得:DE=在Rt△CEH中,由勾股定理得:EH2=CE2+CH2∴(ED+DH)2=2CE2,即(ED+BE)2=2CE2∴64=2CE2∴CE=4.【考點】本題考查了正方形、圓、等腰三角形、勾股定理、全等三角形、旋轉(zhuǎn)的知識;解題的關(guān)鍵是熟練掌握正方形、圓周角、正多邊形與圓、等腰三角形、勾股定理、全等三角形、旋轉(zhuǎn)的性質(zhì),從而完成求解.5、見解析【解析】【分析】先確定圓心,再確定圓的半徑,畫圓即可.【詳解】解:如
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陜西省2025八年級物理上冊第二章光現(xiàn)象新考法階段培優(yōu)練32.3~2.4課件新版蘇科版
- 機房管理培訓(xùn)課件
- 產(chǎn)后恢復(fù)期的飲食調(diào)理
- 調(diào)整生活習慣預(yù)防頭痛
- 安全培訓(xùn)記錄有效時間課件
- 新冠病毒疫苗接種不良反應(yīng)處理
- 基礎(chǔ)護理學課件
- 機場安全生產(chǎn)法培訓(xùn)課件教學
- 小語種考研就業(yè)前景
- 眩暈患者的心理評估與干預(yù)
- 醫(yī)學三維可視化與虛擬現(xiàn)實技術(shù):革新肝癌腹腔鏡手術(shù)的探索與實踐
- 統(tǒng)編版(2024)八年級上冊歷史新教材全冊知識點復(fù)習提綱
- 水平定向鉆施工技術(shù)應(yīng)用與管理
- 風險金管理辦法
- 校長在食堂從業(yè)人員培訓(xùn)會上的講話
- (高清版)DBJ∕T 13-91-2025 《福建省房屋市政工程安全風險分級管控與隱患排查治理標準》
- 美育視域下先秦儒家樂教思想對舞蹈教育的當代價值研究
- 運輸企業(yè)隱患排查獎懲制度
- 學堂在線 雨課堂 學堂云 工程倫理2.0 章節(jié)測試答案
- 網(wǎng)絡(luò)傳播法規(guī)(自考14339)復(fù)習題庫(含答案)
- 廣東省江門市蓬江區(qū)2025年七年級上學期語文期末考試試卷及答案
評論
0/150
提交評論