2022年山東省昌邑市中考數(shù)學能力檢測試卷【奪分金卷】附答案詳解_第1頁
2022年山東省昌邑市中考數(shù)學能力檢測試卷【奪分金卷】附答案詳解_第2頁
2022年山東省昌邑市中考數(shù)學能力檢測試卷【奪分金卷】附答案詳解_第3頁
2022年山東省昌邑市中考數(shù)學能力檢測試卷【奪分金卷】附答案詳解_第4頁
2022年山東省昌邑市中考數(shù)學能力檢測試卷【奪分金卷】附答案詳解_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省昌邑市中考數(shù)學能力檢測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,在等腰Rt△ABC中,AC=BC=,點P在以斜邊AB為直徑的半圓上,M為PC的中點.當點P沿半圓從點A運動至點B時,點M運動的路徑長是(

)A.π B.π C.π D.22、平面直角坐標系中點關(guān)于原點對稱的點的坐標是()A. B. C. D.3、小穎有兩頂帽子,分別為紅色和黑色,有三條圍巾,分別為紅色、黑色和白色,她隨機拿出一頂帽子和一條圍巾戴上,恰好為紅色帽子和紅色圍巾的概率是(

)A. B. C. D.4、函數(shù)y=ax與y=ax2+a(a≠0)在同一直角坐標系中的大致圖象可能是()A. B.C. D.5、二次函數(shù)y=ax2+bx+c的部分圖象如圖所示,由圖象可知該拋物線與x軸的交點坐標是(

)A.(﹣1,0)和(5,0) B.(1,0)和(5,0)C.(0,﹣1)和(0,5) D.(0,1)和(0,5)二、多選題(5小題,每小題3分,共計15分)1、如圖,AB為⊙O直徑,弦CD⊥AB于E,則下面結(jié)論中正確的是(

)A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE2、二次函數(shù)y=ax2+bx+c的部分對應(yīng)值如下表:以下結(jié)論正確的是(

)x…﹣3﹣20135…y…70﹣8﹣9﹣57…A.拋物線的頂點坐標為(1,﹣9);B.與y軸的交點坐標為(0,﹣8);C.與x軸的交點坐標為(﹣2,0)和(2,0);D.當x=﹣1時,對應(yīng)的函數(shù)值y為﹣5.3、下列命題不正確的是(

)A.三角形的內(nèi)心到三角形三個頂點的距離相等B.三角形的內(nèi)心不一定在三角形的內(nèi)部C.等邊三角形的內(nèi)心,外心重合D.一個圓一定有唯一一個外切三角形4、下列說法中,正確的有()A.等弧所對的圓心角相等B.經(jīng)過三點可以作一個圓C.平分弦的直徑垂直于這條弦D.圓的內(nèi)接平行四邊形是矩形5、運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論正確的是(

)A.足球距離地面的最大高度為20mB.足球飛行路線的對稱軸是直線C.足球被踢出9s時落地D.足球被踢出1.5s時,距離地面的高度是11m第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,在中,,分別以、、邊為直徑作半圓,圖中陰影部分在數(shù)學史上稱為“希波克拉底月牙”.當,時,則陰影部分的面積為__________.2、如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣3,0),B(1,0),與y軸交于點C.下列結(jié)論:①abc>0;②3a﹣c=0;③當x<0時,y隨x的增大而增大;④對于任意實數(shù)m,總有a﹣b≥am2﹣bm.其中正確的是_____(填寫序號).3、已知圓O的圓心到直線l的距離為2,且圓的半徑是方程x2﹣5x+6=0的根,則直線l與圓O的的位置關(guān)系是______.4、已知關(guān)于的一元二次方程,有下列結(jié)論:①當時,方程有兩個不相等的實根;②當時,方程不可能有兩個異號的實根;③當時,方程的兩個實根不可能都小于1;④當時,方程的兩個實根一個大于3,另一個小于3.以上4個結(jié)論中,正確的個數(shù)為_________.5、將二次函數(shù)化成一般形式,其中二次項系數(shù)為________,一次項系數(shù)為________,常數(shù)項為________.四、簡答題(2小題,每小題10分,共計20分)1、如圖,在△ABC中,D,E分別是AC,AB上的點,∠ADE=∠B.△ABC的角平分線AF交DE于點G,交BC于點F.(1)求證:△ADG∽△ABF;(2)若,AF=6,求GF的長.2、如圖,A,B兩點被池塘隔開,在AB外取一點C,連接AC,BC,在AC上取點M,使AM=3MC,作MN∥AB交BC于點N,量得MN=38m,求AB的長.五、解答題(4小題,每小題10分,共計40分)1、如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E(1)求證:AC是⊙O的切線;(2)若OB=2,CD=,求圖中陰影部分的面積(結(jié)果保留).2、二次函數(shù)與軸分別交于點和點,與軸交于點,直線的解析式為,軸交直線于點.(1)求二次函數(shù)的解析式;(2)為線段上一動點,過點且垂直于軸的直線與拋物線及直線分別交于點、.直線與直線交于點,當時,求值.3、定理:一條弧所對的圓周角等于這條弧所對的圓心角的一半.如圖1,∠A=∠O.已知:如圖2,AC是⊙O的一條弦,點D在⊙O上(與A、C不重合),聯(lián)結(jié)DE交射線AO于點E,聯(lián)結(jié)OD,⊙O的半徑為5,tan∠OAC=.(1)求弦AC的長.(2)當點E在線段OA上時,若△DOE與△AEC相似,求∠DCA的正切值.(3)當OE=1時,求點A與點D之間的距離(直接寫出答案).4、如圖,等腰直角三角形,,,延長至E,使得,以為直角邊作,,.(1)若以每秒1個單位的速度沿向右運動,當點E到達點C時停止運動,直接寫出在運動過程中與重疊部分面積S與運動時間t(單位:秒)的函數(shù)關(guān)系式;(2)點M為線段的中點,當(1)中的頂點E運動到點C后,將繞著點C繼續(xù)順時針旋轉(zhuǎn)得到,點P是直線上一動點,連接,求的最小值.-參考答案-一、單選題1、B【解析】【分析】取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,利用勾股定理得到AB的長,進而可求出OC,OP的長,求得∠CMO=90°,于是得到點M在以O(shè)C為直徑的圓上,然后根據(jù)圓的周長公式計算點M運動的路徑長.【詳解】解:取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=OP=AB=2,∵∠ACB=90°,∴C在⊙O上,∵M為PC的中點,∴OM⊥PC,∴∠CMO=90°,∴點M在以O(shè)C為直徑的圓上,P點在A點時,M點在E點;P點在B點時,M點在F點.∵O是AB中點,E是AC中點,∴OE是△ABC的中位線,∴OE//BC,OE=BC=,∴OE⊥AC,同理OF⊥BC,OF=,∴四邊形CEOF是矩形,∵OE=OF,∴四邊形CEOF為正方形,EF=OC=2,∴M點的路徑為以EF為直徑的半圓,∴點M運動的路徑長=×π×2=π.故選:B.【考點】本題考查了等腰三角形的性質(zhì),勾股定理,正方形的判定與性質(zhì),圓周角定理,以及動點的軌跡:點按一定規(guī)律運動所形成的圖形為點運動的軌跡.解決此題的關(guān)鍵是利用圓周角定理確定M點的軌跡為以EF為直徑的半圓.2、B【分析】根據(jù)關(guān)于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù),即可求解.【詳解】解:平面直角坐標系中點關(guān)于原點對稱的點的坐標是故選B【點睛】本題考查了關(guān)于原點對稱的點的特征,掌握關(guān)于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù)是解題的關(guān)鍵.3、C【解析】【分析】利用列表法或樹狀圖即可解決.【詳解】分別用r、b代表紅色帽子、黑色帽子,用R、B、W分別代表紅色圍巾、黑色圍巾、白色圍巾,列表如下:RBWrrRrBrWbbRbBbW則所有可能的結(jié)果數(shù)為6種,其中恰好為紅色帽子和紅色圍巾的結(jié)果數(shù)為1種,根據(jù)概率公式,恰好為紅色帽子和紅色圍巾的概率是.故選:C.【考點】本題考查了簡單事件的概率,常用列表法或畫樹狀圖來求解.4、D【解析】【分析】先根據(jù)一次函數(shù)的性質(zhì)確定a>0與a<0兩種情況分類討論拋物線的頂點位置即可得出結(jié)論.【詳解】解:函數(shù)y=ax與y=ax2+a(a≠0)A.函數(shù)y=ax圖形可得a<0,則y=ax2+a(a≠0)開口方向向下正確,當頂點坐標為(0,a),應(yīng)交于y軸負半軸,而不是交y軸正半軸,故選項A不正確;

B.函數(shù)y=ax圖形可得a<0,則y=ax2+a(a≠0)開口方向向下正確,當頂點坐標為(0,a),應(yīng)交于y軸負半軸,而不是在坐標原點上,故選項B不正確;

C.函數(shù)y=ax圖形可得a>0,則y=ax2+a(a≠0)開口方向向上正確,當頂點坐標為(0,a),應(yīng)交于y軸正半軸,故選項C不正確;

D.函數(shù)y=ax圖形可得a<0,則y=ax2+a(a≠0)開口方向向上正確,當頂點坐標為(0,a),應(yīng)交于y軸正半軸正確,故選項D正確;

故選D.【考點】本題考查的知識點是一次函數(shù)的圖象與二次函數(shù)的圖象,理解掌握函數(shù)圖象的性質(zhì)是解此題的關(guān)鍵.5、A【解析】【分析】首先根據(jù)圖像得出拋物線的對稱軸和其中一個交點坐標,然后根據(jù)二次函數(shù)的對稱性即可求得另一個交點坐標.【詳解】解:由圖像可得,拋物線的對稱軸為,與x軸的一個交點坐標為(5,0),∵拋物線與x軸的兩個交點關(guān)于對稱軸對稱,∴拋物線與x軸的另一個交點坐標為(﹣1,0),故選:A.【考點】此題考查了二次函數(shù)與x軸的交點,二次函數(shù)的對稱性,解題的關(guān)鍵是根據(jù)二次函數(shù)的對稱性求出與x軸的另一個交點坐標.二、多選題1、ABC【解析】【分析】根據(jù)垂徑定理知,垂直于弦的直徑平分弦,并且平分線所對的兩條弧,即可判斷A選項、B選項正確,由圓周角定理知,在同圓或等圓中,同弧所對的圓周角相等,可判斷C選項正確,題目中并沒有提到E是OB中點,所以不能證明OE=BE.【詳解】A.AB為⊙O直徑,弦CD⊥AB于E,由垂徑定理得:CE=DE,A選項正確;B.由垂徑定理得:,B選項正確;C.,由圓周角定理得:∠BAC=∠BAD,C選項正確;D.E不一定是OB中點,所以不能證明OE=BE,D錯誤.故選:ABC.【考點】本題考查垂徑定理和圓周角定理,熟知垂直于弦的直徑平分弦,并且平分線所對的兩條弧是解題的關(guān)鍵.2、ABD【解析】【分析】由已知二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的部分對應(yīng)值可知:x=-3與x=

5時,都是y

=

7,由拋物線的對稱性可知:拋物線的對稱軸為直線x=,根據(jù)對稱軸和圖表可得到頂點坐標,拋物線與y軸的交點坐標,拋物線與x軸的另一個交點坐標以及x=﹣1時,對應(yīng)的函數(shù)值,判斷即可.【詳解】由已知二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的部分對應(yīng)值可知:x=-3與x=

5時,都是y

=

7,由拋物線的對稱性可知:拋物線的對稱軸為直線x=,拋物線的頂點坐標為(1,-

9),A正確,符合題意;由圖表可知拋物線與y軸的交點坐標為(0,-8),B正確,符合題意;拋物線過點(-2,0),根據(jù)拋物線的對稱性可知:拋物線與x軸的另一個交點坐標為(4,0),C錯誤,不符合題意;由拋物線的對稱性可知:當x=-1時,對應(yīng)的函數(shù)值與x=3時相同,對應(yīng)的函數(shù)值y

=-5,D正確,符合題意,故答案為:ABD.【考點】此題主要考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握拋物線的圖象和性質(zhì),同時會根據(jù)圖象得到信息.3、ABD【解析】【分析】根據(jù)三角形內(nèi)心的定義和圓的外切三角形的定義判斷即可.【詳解】解:A、三角形的內(nèi)心是三個內(nèi)角平分線的交點,內(nèi)心到三角形三邊的距離相等,錯誤,該選項符合題意;B、三角形的內(nèi)心是三個內(nèi)角平分線的交點,三角形的內(nèi)心一定在三角形的內(nèi)部,錯誤,該選項符合題意;C、等邊三角形的內(nèi)心,外心重合,正確,該選項不符合題意;D、經(jīng)過圓上的三點作圓的切線,三條切線相交,即可得到圓的一個外切三角形,所以一個圓有無數(shù)個外切三角形,錯誤,該選項符合題意;故選:ABD.【考點】本題主要考查了內(nèi)心和外心以及命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的定義與定理.4、AD【解析】【分析】根據(jù)圓的有關(guān)概念及性質(zhì),對選項逐個判斷即可.【詳解】解:A.等弧是能夠完全重合的弧,因此等弧所對的圓心角相等,正確,符合題意;B.經(jīng)過不在同一直線上的三點可以作一個圓,故原命題錯誤,不符合題意;C.平分弦(不是直徑)的直徑垂直于這條弦,故原命題錯誤,不符合題意;D.圓的內(nèi)接平行四邊形是矩形,正確,符合題意,正確的有A、D,故答案為:A、D.【考點】此題考查了圓的有關(guān)概念及性質(zhì),解題的關(guān)鍵是熟練掌握圓的相關(guān)概念以及性質(zhì).5、BC【解析】【分析】由題意,拋物線經(jīng)過(0,0),(9,0),所以可以假設(shè)拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯誤,∴拋物線的對稱軸t=4.5,故B正確,∵t=9時,h=0,∴足球被踢出9s時落地,故C正確,∵t=1.5時,h=11.25,故D錯誤.∴正確的有②③,故選:BC【考點】本題考查二次函數(shù)的應(yīng)用、求出拋物線的解析式是解題的關(guān)鍵,屬于中考??碱}型.三、填空題1、【分析】根據(jù)陰影部分面積等于以為直徑的2個半圓的面積加上減去為半徑的半圓面積即.【詳解】解:在中,,,.故答案為:【點睛】本題考查了勾股定理,求扇形面積,直徑所對的圓周角是直角,掌握圓周角定理是解題的關(guān)鍵.2、①④##④①【解析】【分析】根據(jù)拋物線的對稱軸,開口方向,與軸的交點位置,即可判斷①,根據(jù)二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣3,0),B(1,0),即可求得對稱軸,以及當時,,進而可以判斷②③,根據(jù)頂點求得函數(shù)的最大值,即可判斷④.【詳解】解:拋物線開口向下,,對稱軸,,拋物線與軸交于正半軸,,,故①正確,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣3,0),B(1,0),對稱軸為,則,當,,,故②不正確,由函數(shù)圖象以及對稱軸為,可知,當時,隨的增大而增大,故③不正確,對稱軸為,則當時,取得最大值,對于任意實數(shù)m,總有,即,故④正確.故答案為:①④.【考點】本題考查了二次函數(shù)圖象的性質(zhì),數(shù)形結(jié)合是解題的關(guān)鍵.3、相切或相交【詳解】首先求出方程的根,再利用半徑長度,由點O到直線l的距離為d,若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離,從而得出答案.【分析】解:∵x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圓的半徑是方程x2﹣5x+6=0的根,即圓的半徑為2或3,∴當半徑為2時,直線l與圓O的的位置關(guān)系是相切,當半徑為3時,直線l與圓O的的位置關(guān)系是相交,綜上所述,直線l與圓O的的位置關(guān)系是相切或相交.故答案為:相切或相交.【點睛】本題考查的是直線與圓的位置關(guān)系,因式分解法解一元二次方程,解決此類問題可通過比較圓心到直線距離d與圓的半徑大小關(guān)系完成判定.4、①③④【解析】【分析】由根的判別式,根與系數(shù)的關(guān)系進行判斷,即可得到答案.【詳解】解:根據(jù)題意,∵一元二次方程,∴;∴當,即時,方程有兩個不相等的實根;故①正確;當,解得:,方程有兩個同號的實數(shù)根,則當時,方程可能有兩個異號的實根;故②錯誤;拋物線的對稱軸為:,則當時,方程的兩個實根不可能都小于1;故③正確;由,則,解得:或;故④正確;∴正確的結(jié)論有①③④;故答案為:①③④.【考點】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,根與系數(shù)的關(guān)系,解題的關(guān)鍵是掌握所學的知識進行解題.5、

【解析】【分析】通過去括號,移項,可以把方程化成二次函數(shù)的一般形式,然后確定二次項系數(shù),一次項系數(shù),常數(shù)項.【詳解】y=﹣2(x﹣2)2變形為:y=﹣2x2+8x﹣8,所以二次項系數(shù)為﹣2;一次項系數(shù)為8;常數(shù)項為﹣8.故答案為﹣2,8,﹣8.【考點】本題考查的是二次函數(shù)的一般形式,通過去括號,移項,合并同類項,得到二次函數(shù)的一般形式,確定二次項系數(shù),一次項系數(shù),常數(shù)項的值.四、簡答題1、(1)見解析;(2)2【解析】【分析】(1)由角平分線的定義可得∠DAG=∠BAF,再由∠ADE=∠B,即可證明△ADG∽△ABF;(2)由△ADG∽△ABF,可得,即可得到,則GF=AF-AG=2.【詳解】解:(1)∵AF平分∠BAC,∴∠DAG=∠BAF,∵∠ADE=∠B,∴△ADG∽△ABF;(2)∵△ADG∽△ABF,∴,∵,,∴,∴GF=AF-AG=2.【考點】本題主要考查了角平分線的定義,相似三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握相似三角形的性質(zhì)與判定條件.2、.【解析】【分析】先根據(jù)可判斷出,再根據(jù)相似三角形的對應(yīng)邊成比例列出方程解答即可.【詳解】解:,,,,,即,.的長為.【考點】本題考查相似三角形性質(zhì)的應(yīng)用.解題時關(guān)鍵是找出相似的三角形,然后根據(jù)對應(yīng)邊成比例列出方程,建立適當?shù)臄?shù)學模型來解決問題.五、解答題1、(1)見解析;(2)【解析】【分析】(1)欲證明AC是⊙O的切線,只要證明OD⊥AC即可.(2)證明△OBE是等邊三角形即可解決問題.【詳解】(1)證明:連接OD,如圖,∵BD為∠ABC平分線,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴OD⊥AC,∴AC是⊙O的切線.(2)過O作OG⊥BC,連接OE,則四邊形ODCG為矩形,∴GC=OD=OB=2,OG=CD=,在Rt△OBG中,利用勾股定理得:BG=1,∴BE=2,則△OBE是等邊三角形,∴陰影部分面積為﹣×2×=.【考點】本題考查切線的判定和性質(zhì),等邊三角形的判定和性質(zhì),思想的面積公式等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.2、(1);(2)的值為,,.【解析】【分析】(1)由直線BC求出B、C的坐標,再代入二次函數(shù)的解析式,求出b、c的值,得出二次函數(shù)的解析式;(2)用含有m的代數(shù)式表示點E和點F的坐標,用相似三角形對應(yīng)邊成比例的性質(zhì)列方程,求出m的值.【詳解】(1)直線的解析式點,點和在拋物線上,解得:二次函數(shù)的解析式為:(2)二次函數(shù)與軸交于點、點軸交直線于點點軸,軸,軸交直線于點,點點的坐標為,點的坐標為①若點在原點右側(cè),如圖1,則,即,解得:,;②若點在原點左側(cè),如圖2,則即,解得:,(舍去);綜上所述,的值為,,.【考點】本題考查二次函數(shù)與幾何的綜合問題,熟練掌握二次函數(shù)的性質(zhì)是本題的解題關(guān)鍵,解題時結(jié)合一次函數(shù)的性質(zhì),利用相似三角形的性質(zhì)列方程,靈活應(yīng)用函數(shù)圖像上點的坐標特征.3、(1)8(2)(3)或.【分析】(1)過點O作OH⊥AC于點H,由垂徑定理可得AH=CH=AC,由銳角三角函數(shù)和勾股定理可求解;(2)分兩種情況討論,由相似三角形的性質(zhì)可求AG,EG,CG的長,即可求解;(3)分兩種情況討論,由相似三角形和勾股定理可求解.(1)如圖2,過點O作OH⊥AC于點H,由垂徑定理得:AH=CH=AC,在Rt△OAH中,,∴設(shè)OH=3x,AH=4x,∵OH2+AH2=OA2,∴(3x)2+(4x)2=52,解得:x=±1,(x=﹣1舍去),∴OH=3,AH=4,∴AC=2AH=8;(2)如圖2,過點O作OH⊥AC于H,過E作EG⊥AC于G,∵∠DEO=∠AEC,∴當△DOE與△AEC相似時可得:∠DOE=∠A或者∠DOE=∠ACD;,∴∠ACD≠∠DOE∴當△DOE與△AEC相似時,不存在∠DOE=∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論