2024-2025學年北師大版9年級數(shù)學上冊期末試卷及答案詳解【歷年真題】_第1頁
2024-2025學年北師大版9年級數(shù)學上冊期末試卷及答案詳解【歷年真題】_第2頁
2024-2025學年北師大版9年級數(shù)學上冊期末試卷及答案詳解【歷年真題】_第3頁
2024-2025學年北師大版9年級數(shù)學上冊期末試卷及答案詳解【歷年真題】_第4頁
2024-2025學年北師大版9年級數(shù)學上冊期末試卷及答案詳解【歷年真題】_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北師大版9年級數(shù)學上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、如圖,在△ABC中,點G為△ABC的重心,過點G作DE∥BC,分別交AB、AC于點D、E,則△ADE與四邊形DBCE的面積比為()A. B. C. D.2、如果,那么的結果是(

)A. B. C. D.3、從下列命題中,隨機抽取一個是真命題的概率是(

)(1)無理數(shù)都是無限小數(shù);(2)因式分解;(3)棱長是的正方體的表面展開圖的周長一定是;(4)兩條對角線長分別為6和8的菱形的周長是40.A. B. C. D.14、如圖,G是正方形ABCD內(nèi)一點,以GC為邊長,作正方形GCEF,連接BG和DE,試用旋轉(zhuǎn)的思想說明線段BG與DE的關系()A.DE=BG B.DE>BG C.DE<BG D.DE≥BG5、如圖,在矩形ABCD中,E,F(xiàn)分別是AD,BC的中點,連結AF,BE,CE,DF分別交于點M,N,則四邊形EMFN是()A.梯形 B.菱形C.矩形 D.無法確定6、方程y2=-a有實數(shù)根的條件是(

)A.a(chǎn)≤0 B.a(chǎn)≥0 C.a(chǎn)>0 D.a(chǎn)為任何實數(shù)二、多選題(6小題,每小題2分,共計12分)1、下列多邊形中,一定不相似的是(

)A.兩個矩形 B.兩個菱形 C.兩個正方形 D.兩個平行四邊形2、下列命題中真命題有(

)A.四個角相等的四邊形是矩形 B.對角線垂直的四邊形是菱形C.對角線相等的平行四邊形是矩形 D.四邊相等的四邊形是正方形3、如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E、F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,以下結論正確的有(

)A.四邊形CFHE是菱形 B.EC平分∠DCHC.線段BF的取值范圍為3≤BF≤4 D.當點H與點A重合時,EF=4、下列命題中的真命題是(

)A.矩形的對角線相等 B.對角線相等的四邊形是矩形C.菱形的對角線互相垂直平分 D.對角線互相垂直的四邊形是菱形5、下列關于位似圖形的說法中正確的是(

)A.相似圖形一定是位似圖形,位似圖形一定是相似圖形B.位似圖形一定有位似中心C.如果兩個圖形是相似圖形,且每組對應點的連線所在的直線都經(jīng)過同一個點,那么這兩個圖形是位似圖形D.位似圖形上任意兩點與位似中心的距離之比等于位似比6、如圖,分別以點A、B為圓心,同樣長度為半徑作圓弧,兩弧相交于點C、D.連結AC、BC、AD、BD,則四邊形ADBC一定是(

)A.矩形 B.菱形 C.正方形 D.平行四邊形第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、已知一元二次方程ax2+bx+c=0(a≠0),下列結論:①若方程兩根為-1和2,則2a+c=0;②若b>a+c,則方程有兩個不相等的實數(shù)根;③若b=2a+3c,則方程有兩個不相等的實數(shù)根;④若m是方程的一個根,則一定有b2-4ac=(2am+b)2成立.其中結論正確的序號是__________.2、如圖,點A是反比例函數(shù)y=(x>0)圖象上的一點,AB垂直于x軸,垂足為B,△OAB的面積為6.若點P(a,4)也在此函數(shù)的圖象上,則a=_____.3、如圖,在一塊長為22m,寬為14m的矩形空地內(nèi)修建三條寬度相等的小路(陰影部分),其余部分種植花草.若花草的種植面積為240m2,則小路的寬為________m.4、若正方形的對角線的長為4,則該正方形的面積為_________.5、如圖,在一塊長12m,寬8m的矩形空地上,修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條平行),剩余部分栽種花草,且栽種花草的面積77m2,設道路的寬為xm,則根據(jù)題意,可列方程為_______.6、如圖,四邊形ABCD為菱形,,延長BC到E,在內(nèi)作射線CM,使得,過點D作,垂足為F.若,則對角線BD的長為______.7、你知道嗎,對于一元二次方程,我國古代數(shù)學家還研究過其幾何解法呢!以方程即為例加以說明.數(shù)學家趙爽(公元3~4世紀)在其所著的《勾股圓方圖注》中記載的方法是:構造圖(如下面左圖)中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據(jù)此易得.那么在下面右邊三個構圖(矩形的頂點均落在邊長為1的小正方形網(wǎng)格格點上)中,能夠說明方程的正確構圖是_____.(只填序號)8、已知,則的值為_____.四、解答題(6小題,每小題10分,共計60分)1、定義:有一組對邊相等且這一組對邊所在直線互相垂直的凸四邊形叫做“等垂四邊形”.(1)如圖①,四邊形ABCD與四邊形AEFG都是正方形,135°<∠AEB<180°,求證:四邊形BEGD是“等垂四邊形”;(2)如圖②,四邊形ABCD是“等垂四邊形”,AD≠BC,連接BD,點E,F(xiàn),G分別是AD,BD,BC的中點,連接EG,F(xiàn)G,EF.試判定△EFG的形狀,并證明你的結論;(3)如圖③,四邊形ABCD是“等垂四邊形”,AD=4,BC=8,請直接寫出邊AB長的最小值.

2、用適當?shù)姆椒ń夥匠蹋?1).(2).3、已知,且,求x,y的值.4、在矩形中,于點,點是邊上一點.(1)若平分,交于點,PF⊥BD,如圖(1),證明四邊形是菱形;(2)若,如圖(2),求證:.5、如圖,A,B兩點被池塘隔開,在AB外取一點C,連接AC,BC,在AC上取點M,使AM=3MC,作MN∥AB交BC于點N,量得MN=38m,求AB的長.6、已知反比例函數(shù)y=(m為常數(shù))的圖象在第一、三象限.(1)求m的取值范圍;(2)如圖,若該反比例函數(shù)的圖象經(jīng)過?ABOD的頂點D,點A,B的坐標分別為(0,3),(﹣2,0),求出該反比例函數(shù)的解析式;(3)若E(x1,y1),F(xiàn)(x2,y2)都在該反比例函數(shù)的圖象上,且x1>x2>0,則y1和y2有怎樣的大小關系?-參考答案-一、單選題1、A【解析】【分析】連接AG并延長交BC于H,如圖,利用三角形重心的性質(zhì)得到AG=2GH,再證明△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)得到==,然后根據(jù)比例的性質(zhì)得到△ADE與四邊形DBCE的面積比.【詳解】解:連接AG并延長交BC于H,如圖,∵點G為△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE與四邊形DBCE的面積比=.故選:A.【考點】本題考查了三角形的重心與相似三角形的性質(zhì)與判定.重心到頂點的距離與重心到對邊中點的距離之比為2∶1.2、B【解析】【分析】根據(jù)比例的性質(zhì)即可得到結論.【詳解】∵=,∴可設a=2k,b=3k,∴==-.故選B.【考點】本題主要考查了比例的性質(zhì),解本題的要點根據(jù)題意可設a,b的值,從而求出答案.3、C【解析】【分析】分別判斷各命題的真假,再利用概率公式求解.【詳解】(1)無理數(shù)都是無限小數(shù),是真命題,(2)因式分解,是真命題,(3)棱長是的正方體的表面展開圖的周長一定是,是真命題,(4)菱形的對角線長為6和8根據(jù)菱形的性質(zhì),對角線互相垂直且平分,利用勾股定理可求得菱形的邊長為5,則菱形的周長為,是假命題則隨機抽取一個是真命題的概率是,故選:C.【考點】本題考查了命題的真假,概率,菱形的性質(zhì),無理數(shù),因式分解,正方體展開圖,知識點較多,難度一般,解題的關鍵是運用所學知識判斷各個命題的真假.4、A【解析】【分析】根據(jù)四邊形ABCD為正方形,得出BC=DC,∠BCD=90°,根據(jù)四邊形CEFG為正方形,得出GC=EC,∠GCE=90°,再證∠BCG=∠DCE,△BCG與△DCE具有可旋轉(zhuǎn)的特征即可【詳解】解:∵四邊形ABCD為正方形,∴BC=DC,∠BCD=90°,∵四邊形CEFG為正方形,∴GC=EC,∠GCE=90°,∵∠BCG+∠GCD=∠GCD+∠DCE=90°,∴∠BCG=∠DCE,∴△BCG繞點C順時針方向旋轉(zhuǎn)90°得到△DCE,∴BG=DE,故選項A.【考點】本題考查圖形旋轉(zhuǎn)特征,正方形性質(zhì),三角形全等條件,同角的余角性質(zhì),掌握圖形旋轉(zhuǎn)特征,正方形性質(zhì),三角形全等條件是解題關鍵.5、B【解析】【分析】求出四邊形ABFE為平行四邊形,四邊形BFDE為平行四邊形,根據(jù)平行四邊形的性質(zhì)得出BE∥FD,即ME∥FN,同理可證EN∥MF,得出四邊形EMFN為平行四邊形,求出ME=MF,根據(jù)菱形的判定得出即可.【詳解】連接EF.∵四邊形ABCD為矩形,∴AD∥BC,AD=BC,又∵E,F(xiàn)分別為AD,BC中點,∴AE∥BF,AE=BF,ED∥CF,DE=CF,∴四邊形ABFE為平行四邊形,四邊形BFDE為平行四邊形,∴BE∥FD,即ME∥FN,同理可證EN∥MF,∴四邊形EMFN為平行四邊形,∵四邊形ABFE為平行四邊形,∠ABC為直角,∴ABFE為矩形,∴AF,BE互相平分于M點,∴ME=MF,∴四邊形EMFN為菱形.故選B.【考點】本題考查了矩形的性質(zhì)和判定,菱形的判定,平行四邊形的性質(zhì)和判定的應用,能綜合運用性質(zhì)進行推理是解此題的關鍵,題目比較好,綜合性比較強.6、A【解析】【分析】根據(jù)平方的非負性可以得出﹣a≥0,再進行整理即可.【詳解】解:∵方程y2=﹣a有實數(shù)根,∴﹣a≥0(平方具有非負性),∴a≤0;故選:A.【考點】此題考查了直接開平方法解一元二次方程,關鍵是根據(jù)已知條件得出﹣a≥0.二、多選題1、ABD【解析】【分析】利用相似多邊形的對應邊的比相等,對應角相等分析.【詳解】解:要判斷兩個多邊形是否相似,需要看對應角是否相等,對應邊的比是否相等.矩形、菱形、平行四邊形都屬于形狀不唯一確定的圖形,即對應角、對應邊的比不一定相等,故不一定相似,選項A、B、D符合題意;而兩個正方形,對應角都是90°,對應邊的比也都相等,故一定相似,選項C不符合題意.故選:ABD.【考點】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應邊的比相等,對應角相等.兩個條件必須同時具備.2、AC【解析】【分析】真命題就是正確的命題,即如果命題的題設成立,那么結論一定成立.因此,分別根據(jù)矩形、菱形、正方形的判定作出判斷得即可.【詳解】解:A、根據(jù)四邊形的內(nèi)角和是360度得出,四個角相等的四邊形即四個內(nèi)角是直角,故此四邊形是矩形,故此命題是真命題,符合題意;B、只有對角線互相平分且垂直的四邊形是菱形,故此命題不是真命題,不符合題意;C、對角線互相平分且相等的四邊形是矩形,故此命題不是真命題,符合題意;D、四邊相等的四邊形是菱形,故此命題不是真命題,不符合題意.故選AC.【考點】本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質(zhì)定理.3、ACD【解析】【分析】先判斷出四邊形CFHE是平行四邊形,再根據(jù)翻折的性質(zhì)可得CF=FH,然后根據(jù)鄰邊相等的平行四邊形是菱形證明即可判斷出A正確;根據(jù)菱形的對角線平分一組對角可得∠BCH=∠ECH,然后求出只有∠DCE=30°時EC平分∠DCH,即可判斷出B錯誤;點H與點A重合時,設BF=x,表示出AF=FC=8-x,利用勾股定理列出方程求解得到BF的最小值,點G與點D重合時,CF=CD,求出BF=4,然后寫出BF的取值范圍,即可判斷出C正確;過點F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,即可判斷出D正確.【詳解】解:∵FH與CG,EH與CF都是矩形ABCD的對邊AD、BC的一部分,∴FH∥CG,EH∥CF,∴四邊形CFHE是平行四邊形,由翻折的性質(zhì)得,CF=FH,∴四邊形CFHE是菱形,故A正確;∵四邊形CFHE是菱形,∴∠BCH=∠ECH,∴只有∠DCE=30°時EC平分∠DCH,故B錯誤;點H與點A重合時,設BF=x,則AF=FC=8-x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8-x)2,解得x=3,點G與點D重合時,CF=CD=4,∴BF=4,∴線段BF的取值范圍為3≤BF≤4,故C正確;如圖,過點F作FM⊥AD于M,則ME=(8-3)-3=2,由勾股定理得,EF=,故D正確;故選ACD.【考點】本題考查了菱形的判定和性質(zhì),矩形的性質(zhì),翻折的性質(zhì),勾股定理,掌握知識點是解題關鍵.4、AC【解析】【分析】根據(jù)菱形的判定與性質(zhì),矩形的判定和性質(zhì)即可進行判斷.【詳解】解:A、矩形的對角線相等,是真命題,符合題意;B、對角線相等的平行四邊形是矩形,是假命題,不符合題意;C、菱形的對角線互相垂直平分,是真命題,符合題意;D、對角線互相垂直平分的四邊形是菱形,是假命題,不符合題意;故選AC.【考點】本題考查了,矩形的判定,菱形的判定與性質(zhì),解題的關鍵是掌握所學的定理.5、B【解析】【分析】根據(jù)位似圖形的性質(zhì)解答.【詳解】解:A、位似圖形一定是相似圖形,相似圖形不一定是位似圖形,故該選項錯誤;B、位似圖形一定有位似中心,故該項正確;C、如果兩個圖形是相似圖形,且每組對應點的連線所在的直線都經(jīng)過同一個點,且對應邊平行,那么這兩個圖形是位似圖形,故該項錯誤;D、位似圖形上對應點與位似中心的距離之比等于位似比,故該項錯誤;故選:B.【考點】此題考查位似圖形的性質(zhì):位似圖形對應點與位似中心的連線的比等于位似比,兩個位似圖形一定是相似圖形,熟記性質(zhì)是解題的關鍵.6、BD【解析】【分析】根據(jù)四邊相等的四邊形是菱形即可判斷.【詳解】解:由作圖可知:AC=AD=BC=BD,∴四邊形ADBC是菱形且為平行四邊形,故選:BD.【考點】本題考查基本作圖,平行四邊形的判定,菱形的判定等知識,解題的關鍵是熟練掌握五種基本作圖,屬于中考??碱}型.三、填空題1、①③④【解析】【分析】利用根與系數(shù)的關系判斷①;由Δ=b2-4ac判斷②;由判別式可判斷③;將x=m代入方程得am2=-(bm+c),再代入=(2am+b)2變形可判斷④.【詳解】解:若方程兩根為-1和2,則=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正確;由b>a+c不能判斷Δ=b2-4ac值的大小情況,故②錯誤;若b=2a+3c,則Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根,故③正確.若m是方程ax2+bx+c=0的一個根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正確;故答案為:①③④.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系及根的判別式Δ=b2-4ac:當Δ>0,方程有兩個不相等的實數(shù)根;當Δ=0,方程有兩個相等的實數(shù)根;當Δ<0,方程沒有實數(shù)根.2、3【解析】【分析】根據(jù)反比例函數(shù)的幾何意義,可得,從而得到,再將點P(a,4)代入解析式,即可求解.【詳解】解:∵點A是反比例函數(shù)y=(x>0)圖象上的一點,AB垂直于x軸,∴,∵△OAB的面積為6.∴,即,∴反比例函數(shù)的解析式為,∵點P(a,4)也在此函數(shù)的圖象上,∴,解得:.故答案為:3【考點】本題主要考查了反比例函數(shù)的幾何意義,反比例函數(shù)的圖象和性質(zhì),熟練掌握反比例函數(shù)的幾何意義,反比例函數(shù)的圖象和性質(zhì),利用數(shù)形結合思想解答是解題的關鍵.3、2【解析】【分析】設小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,根據(jù)花草的種植面積為240m2,即可得出關于x的一元二次方程,解之取其符合題意的值即可得出結論.【詳解】解:設小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,依題意得:(22-x)(14-x)=240,整理得:x2-36x+68=0,解得:x1=2,x2=34(不合題意,舍去).故答案為:2.【考點】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.4、8【解析】【分析】根據(jù)正方形的面積等于對角線乘積的一半列式計算即可得解.【詳解】解:∵正方形的一條對角線的長為4,∴這個正方形的面積=×42=8.故答案為:8.【考點】本題考查了正方形的性質(zhì),熟練掌握正方形的面積的兩種求法是解題的關鍵.5、(12-x)(8-x)=77【解析】【分析】道路外的四塊土地拼到一起正好構成一個矩形,矩形的長和寬分別是(12-x)和(8-x),根據(jù)矩形的面積公式,列出關于道路寬的方程求解.【詳解】道路的寬為x米.依題意得:(12-x)(8-x)=77,故答案為(12-x)(8-x)=77.【考點】本題考查了一元二次方程的應用,關鍵將四個矩形用恰當?shù)姆绞狡闯纱缶匦瘟谐龅攘筷P系.6、【解析】【分析】連接AC交BD于H,證明DCH≌DCF,得出DH的長度,再根據(jù)菱形的性質(zhì)得出BD的長度.【詳解】解:如圖,連接AC交BD于點H,由菱形的性質(zhì)得∠BDC=35,∠DCE=70,又∵∠MCE=15,∴∠DCF=55,∵DF⊥CM,∴∠CDF=35,又∵四邊形ABCD是菱形,∴BD平分∠ADC,∴∠HDC=35,在CDH和CDF中,∴CDH≌CDF(AAS),∴,∴DB=,故答案為.【考點】本題主要考查菱形的性質(zhì)和全等三角形的判定,菱形的對角線互相平分是此題的關鍵知識點,得出∠HDC=∠FDC是這個題最關鍵的一點.7、②【解析】【分析】仿造案例,構造面積是的大正方形,由它的面積為,可求出,此題得解.【詳解】解:即,構造如圖②中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據(jù)此易得.故答案為②.【考點】本題考查了一元二次方程的應用,仿造案例,構造出合適的大正方形是解題的關鍵.8、1【解析】【分析】由比例的性質(zhì),設,則,,,然后代入計算,即可得到答案.【詳解】解:根據(jù)題意,設,∴,,,∴,故答案為:1.【考點】本題考查了比例的性質(zhì),解題的關鍵是掌握比例的性質(zhì)進行解題.四、解答題1、∴拋物線的解析式為y=x(2)①∵A(1,2),B(7,2),當拋物線經(jīng)過點A時,a=2,當拋物線經(jīng)過點B時,2=49a,∴a=,∵若G與△ABC有交點,∴≤a≤2.②由題意當a=時,y=x2,當y=8時,8=x2,∴x>0,∴x=14,∴當反比例函數(shù)y=經(jīng)過點(14,8)時k的值最大,此時k=112,∴k的最大值為112【考點】本題考查二次函數(shù)綜合題、待定系數(shù)法、勾股定理等知識,解題的關鍵是理解題意,學會利用特殊點解決問題,屬于中考壓軸題.2.(1)證明見解析;(2)△EFG是等腰直角三角形;證明見解析;(3)AB最小值為【解析】【分析】延長BE,DG交于點H,先證△ABE≌△ADG,得BE=DG,∠ABE=∠ADG.結合∠ABD+∠ADB=90°,知∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即可得∠BHD=90°.從而得證;(2)延長BA,CD交于點H,由四邊形ABCD是“等垂四邊形”,AD≠BC知AB⊥CD,AB=CD,從而得∠HBC+∠HCB=90°,根據(jù)三個中點知EF=AB,GF=CD,EF∥AB,GF∥DC,據(jù)此得∠BGF=∠C,EFD=∠HBD,EF=GF.由∠EFG=∠EFD+∠DFG=∠ABD+∠DBC+∠FGB=∠ABD+∠DBC+∠C=∠HBC+∠HCB=90°可得答案;(3)延長BA,CD交于點H,分別取AD,BC的中點E,F(xiàn).連接HE,EF,HF,由EF≥HF?HE=BC?AD=4?2=2然后結合(2)可知AB=EF≥2可得答案.【詳解】解:(1)如圖①,延長BE,DG交于點H,∵四邊形ABCD與四邊形AEFG都為正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°.∴∠BAE=∠DAG.∴△ABE≌△ADG(SAS).∴BE=DG,∠ABE=∠ADG.∵∠ABD+∠ADB=90°,∴∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即∠EBD+∠BDG=90°,∴∠BHD=90°.∴BE⊥DG.又∵BE=DG,∴四邊形BEGD是“等垂四邊形”;(2)△EFG是等腰直角三角形.理由如下:如圖②,延長BA,CD交于點H,∵四邊形ABCD是“等垂四邊形”,AD≠BC,∴AB⊥CD,AB=CD,∴∠HBC+∠HCB=90°∵點E,F(xiàn),G分別是AD,BC,BD的中點,∴EF=AB,GF=CD,EF∥AB,GF∥DC,∴∠BGF=∠C,∠EFD=∠HBD,EF=GF,∴∠EFG=∠EFD+∠DFG=∠ABD+∠DBC+∠FGB=∠ABD+∠DBC+∠C=∠HBC+∠HCB=90°.∴△EFG是等腰直角三角形;(3)延長BA,CD交于點H,分別取AD,BC的中點E,F(xiàn).連接HE,EF,HF,則EF≥HF?HE=BC?AD=4?2=2,由(2)可知AB=EF≥2,∴AB最小值為【考點】本題是四邊形的綜合問題,解題的關鍵是掌握正方形的性質(zhì)、全等三角形的判定與性質(zhì)、三角形中位線定理及等腰直角三角形的性質(zhì)等知識點.2、(1),;(2),【解析】【分析】將左邊利用十字相乘法因式分解,繼而可得兩個關于的一元一次方程,分別求解即可得出答案;先移項,再將左邊利用提公因式法因式分解,繼而可得兩個關于的一元一次方程,分別求解即可得出答案.(1)解:,,則或,解得,,所以,原方程的解為,;(2)解:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論