2024-2025學年北師大版9年級數學上冊期中測試卷附答案詳解AB卷_第1頁
2024-2025學年北師大版9年級數學上冊期中測試卷附答案詳解AB卷_第2頁
2024-2025學年北師大版9年級數學上冊期中測試卷附答案詳解AB卷_第3頁
2024-2025學年北師大版9年級數學上冊期中測試卷附答案詳解AB卷_第4頁
2024-2025學年北師大版9年級數學上冊期中測試卷附答案詳解AB卷_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北師大版9年級數學上冊期中測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、若菱形兩條對角線的長度是方程的兩根,則該菱形的邊長為(

)A. B.4 C. D.52、若m,n是方程x2-x-2022=0的兩個根,則代數式(m2-2m-2022)(-n2+2n+2022)的值為(

)A.2023 B.2022 C.2021 D.20203、如圖,兩個轉盤分別自由轉動一次(當指針恰好指在分界線上時重轉),當停止轉動時,兩個轉盤的指針都指向3的概率為(

)A. B. C. D.4、若直角三角形的兩邊長分別是方程的兩根,則該直角三角形的面積是(

)A.6 B.12 C.12或 D.6或5、如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC?CF=2HE.其中正確的結論有(

)A.1個 B.2個 C.3個 D.4個6、如圖,點O為矩形ABCD的對稱中心,點E從點A出發(fā)沿AB向點B運動,移動到點B停止,延長EO交CD于點F,則四邊形AECF形狀的變化依次為()A.平行四邊形→正方形→平行四邊形→矩形B.平行四邊形→菱形→平行四邊形→矩形C.平行四邊形→正方形→菱形→矩形D.平行四邊形→菱形→正方形→矩形7、揚帆中學有一塊長,寬的矩形空地,計劃在這塊空地上劃出四分之一的區(qū)域種花,小禹同學設計方案如圖所示,求花帶的寬度.設花帶的寬度為,則可列方程為()A. B.C. D.二、多選題(3小題,每小題2分,共計6分)1、在下列選項中,是方程的根的是(

)A.6 B. C.2 D.2、如圖,在矩形中,,,點P在線段上以的速度從點B向點C運動,同時,點Q在線段上從點C向D點運動.若某一時刻與全等,則點Q的運動速度為(

)A. B. C. D.3、若關于的一元二次方程的兩個實數根分別是,且滿足,則的值不可能為(

)A.或 B. C. D.不存在第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、一個直角三角形的兩條直角邊相差5cm,面積是7cm2,則其斜邊的長是___.2、如圖,在菱形ABCD中,AB的垂直平分線交對角線BD于點F,垂足為點E,連接AF、AC,若∠DCB=70°,則∠FAC=______.3、如圖,在長方形ABCD中,AD=8,AB=6,點E為線段DC上一個動點,把△ADE沿AE折疊,使點D落在點F處,若△CEF為直角三角形時,則DE的長為___.4、如圖,菱形ABCD的邊長為2,∠A=60°,E是邊AB的中點,F是邊AD上的一個動點,將線段EF繞著點E順時針旋轉60°得到EG,連接DG、CG,則DG+CG的最小值為_____.5、已知關于x的方程ax2+bx+1=0的兩根為x1=1,x2=2,則方程a(x+1)2+b(x+1)+1=0的兩根之和為__________.6、有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.7、如圖,在長方形中,,在上存在一點、沿直線把折疊,使點恰好落在邊上的點處,若,那么的長為________.8、若代數式有意義,則x的取值范圍是_____.9、《九章算術》是我國古代的數學名著,其中“勾股”章有一題,大意是說:已知矩形門的高比寬多尺,門的對角線長尺,那么門的高和寬各是多少?如果設門的寬為尺,根據題意,那么可列方程___________.10、關于的一元二次方程有一個根是,則的值是_______.四、解答題(6小題,每小題10分,共計60分)1、如圖,平行四邊形的對角線、相較于點O,且,,.求證:四邊形是矩形.2、如圖1,正方形ABCD中,AB=5,點E為BC邊上一動點,連接AE,以AE為邊,在線段AE右側作正方形,連接CF、DF.設.(當點E與點B重合時,x的值為0),.小明根據學習函數的經驗,對函數隨自變量x的變化而變化的規(guī)律進行了探究.下面是小明的探究過程,請補充完整:(1)通過取點、畫圖、測量、觀察、計算,得到了x與y1、y2的幾組對應值;x0123455.004.123.614.125.0001.412.834.245.657.07(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數值所對應的點,并畫出函數y1,y2的圖象;(3)結合函數圖象2,解決問題:當△CDF為等腰三角形時,BE的長度約為cm.3、已知關于x的一元二次方程x2+(2m﹣3)x+m2=0的兩個不相等的實數根α,β滿足+=1,求m的值.4、如圖,□ABCD中,AC為對角線,EF⊥AC于點O,交AD于點E,交BC于點F,連結AF、CE.請你探究當O點滿足什么條件時,四邊形AFCE是菱形,并說明理由.5、如圖,BF平行于正方形ADCD的對角線AC,點E在BF上,且AE=AC,CF∥AE,求∠BCF.6、解方程:(1);

(2).

(3).-參考答案-一、單選題1、A【解析】【分析】先求出方程的解,即可得出AC=4,BD=2,根據菱形的性質求出AO和OD,根據勾股定理求出AD即可.【詳解】解:解方程x2?6x+8=0得:x=4或2,即AC=4,BD=2,∵四邊形ABCD是菱形,∴∠AOD=90°,AO=OC=2,BO=DO=1,由勾股定理得:AD==,故選:A.【考點】本題考查了解一元二次方程和菱形的性質,能求出方程的解是解此題的關鍵.2、B【解析】【詳解】解:∵m、n是方程x2-x-2022=0的兩個根,∴m2-m-2022=0,n2-n-2022=0,mn=-2022,∴m2-m=2022,n2-n=2022,∴(m2-2m-2022)(-n2+2n+2022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故選:B.【考點】本題考查了一元二次方程的解的定義和一元二次方程根與系數的關系,能根據已知條件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此題的關鍵.3、A【解析】【分析】首先根據題意列出表格,然后由表格即可求得所有等可能的結果與都指向3的情況數,繼而求得答案.【詳解】解:列表如下:12341234共有16種等可能的結果,兩個轉盤的指針都指向3的只有1種結果,兩個轉盤的指針都指向3的概率為,故選:A.【考點】此題考查了樹狀圖法與列表法求概率.用到的知識點為:概率所求情況數與總情況數之比.4、D【解析】【分析】根據題意,先將方程的兩根求出,然后對兩根分別作為直角三角形的直角邊和斜邊進行分情況討論,最終求得該直角三角形的面積即可.【詳解】解方程得,當3和4分別為直角三角形的直角邊時,面積為;當4為斜邊,3為直角邊時根據勾股定理得另一直角邊為,面積為;則該直角三角形的面積是6或,故選:D.【考點】本題主要考查了解一元二次方程及直角三角形直角邊斜邊的確定、直角三角形的面積求解,熟練掌握解一元二次方程及勾股定理是解決本題的關鍵.5、D【解析】【分析】①根據角平分線的定義可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根據等腰直角三角形的性質可得AE=AB,從而得到AE=AD,然后利用“角角邊”證明△ABE和△AHD全等,根據全等三角形對應邊相等可得BE=DH,再根據等腰三角形兩底角相等求出∠ADE=∠AED=67.5°,根據平角等于180°求出∠CED=67.5°,從而判斷出①正確;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根據等角對等邊可得OE=OD=OH,判斷出②正確;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角邊角”證明△BEH和△HDF全等,根據全等三角形對應邊相等可得BH=HF,判斷出③正確;④根據全等三角形對應邊相等可得DF=HE,然后根據HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判斷出④正確.【詳解】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°-45°)=67.5°,∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正確;∵AB=AH,∵∠AHB=(180°-45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正確;綜上所述,結論正確的是①②③④共4個.故選:D.【考點】本題考查了矩形的性質,全等三角形的判定與性質,角平分線的定義,等腰三角形的判定與性質,熟記各性質并仔細分析題目條件,根據相等的度數求出相等的角,從而得到三角形全等的條件或判斷出等腰三角形是解題的關鍵,也是本題的難點.6、B【解析】【分析】根據對稱中心的定義,根據矩形的性質,可得四邊形AECF形狀的變化情況.【詳解】解:觀察圖形可知,四邊形AECF形狀的變化依次為平行四邊形→菱形→平行四邊形→矩形.故選:B.【考點】考查了中心對稱,矩形的性質,平行四邊形的判定與性質,菱形的性質,根據EF與AC的位置關系即可求解.7、D【解析】【分析】根據空白區(qū)域的面積矩形空地的面積可得.【詳解】設花帶的寬度為,則可列方程為,故選D.【考點】本題主要考查由實際問題抽象出一元二次方程,解題的關鍵是根據圖形得出面積的相等關系.二、多選題1、AD【解析】【分析】分別將選項帶入方程計算即可.【詳解】解:當時,,成立,6是方程的根;當時,,不是方程的根;當時,,2不是方程的根;當時,,成立,是方程的根;故選:AD.【考點】本題考查了一元二次方程方程的根,使方程成立的未知數的取值是方程的根.2、AD【解析】【分析】設Q的速度為xcm/s,運動時間為ts時,△ABP與△PCQ全等,則,,,由矩形的性質可知∠B=∠C=90°,則只有△ABP≌△PCQ和△ABP≌△QCP這兩種情況,然后利用全等三角形的性質進行求解即可.【詳解】解:設Q的速度為xcm/s,運動時間為ts時,△ABP與△PCQ全等,∴,,,∵四邊形ABCD是矩形,∴∠B=∠C=90°,當△ABP≌△PCQ時,AB=CP,BP=CQ,∴,解得;當△ABP≌△QCP時,AB=QC,BP=CP,∴,解得∴Q的速度為4cm/或,故選AD..【考點】本題主要考查了矩形的性質,全等三角形的性質,解題的關鍵在于能夠熟練掌握相關知識進行求解.3、ABD【解析】【分析】利用可得,從而得到,解出k結合根的判別式即可求解.【詳解】解:∵于的一元二次方程的兩個實數根分別是,,∴,∵,∴,即,解得:,當時,,∴此時方程無實數根,不合題意,舍去,當時,,∴此時方程有兩個不相等實數根,∴的值為.故選:ABD.【考點】本題主要考查了一元二次方程根與系數的關系,熟練掌握若一元二次方程的兩個實數根分別是,,則是解題的關鍵.三、填空題1、cm【解析】【分析】設較短的直角邊長是xcm,較長的就是(x+5)cm,根據面積是7cm,求出直角邊長,根據勾股定理求出斜邊長.【詳解】解:設這個直角三角形的較短直角邊長為xcm,則較長直角邊長為(x+5)cm,根據題意,得,所以,解得,,因為直角三角形的邊長為正數,所以不符合題意,舍去,所以x=2,當x=2時,x+5=7,由勾股定理,得直角三角形的斜邊長為==cm.故答案為:cm.【考點】本題考查了勾股定理,一元二次方程的應用,關鍵是知道三角形面積公式以及直角三角形中勾股定理的應用.2、20°【解析】【分析】由菱形的性質和等腰三角形的性質求出∠BAC和∠FAB的度數,即可解決問題.【詳解】解:∵EF是線段AB的垂直平分線,∴AF=BF,∴∠FAB=∠FBA,∵四邊形ABCD是菱形,∠DCB=70°,∴BC=AB,∠BCA=∠DCB=35°,AC⊥BD,∴∠BAC=∠BCA=35°,∴∠FBA=90°﹣∠BAC=55°,∴∠FAB=55°,∴∠FAC=∠FAB﹣∠BAC=55°﹣35°=20°,故答案為:20°.【考點】本題考查菱形的性質和等腰三角形的性質,熟練掌握菱形的性質和等腰三角形的性質是解題的關鍵.3、或8或或【解析】【分析】當△CEF為直角三角形時,有兩種情況:①當點F落在矩形內部時,如答圖1所示.先利用勾股定理計算出AC=10,根據折疊的性質得∠AFE=∠D=90°,設DE=x,則EF=x,CE=6-x,然后在Rt△CEF中運用勾股定理可計算出x即可.②當點F落在AB邊上時,如答圖2所示.此時四邊形ADEF為正方形,得出DE=AD=8.③當點F落在BC邊上時,利用勾股定理即可解決問題;④如圖4中,當點F在CB的延長線上時,根據勾股定理列出方程求解即可.【詳解】解:∵四邊形ABCD是矩形,∴∠D=∠B=90°,CD=AB=6,,當△CEF為直角三角形時,有兩種情況:①當點F落在矩形內部時,F落在AC上,如圖1所示.由折疊的性質得:EF=DE,AF=AD=8,設DE=x,則EF=x,CE=6-x,在Rt△CEF中,由勾股定理得:∵EF2+CF2=CE2,∴x2+22=(6-x)2,解得x=,∴DE=;②當點F落在AB邊上時,如圖2所示.此時ADEF為正方形,∴DE=AD=8.③如圖4,當點F落在BC邊上時,易知BF,設DE=EF=x,在Rt△EFC中,,,,④如圖3中,當點F在CB的延長線上時,設DE=EF=x,則BF,在Rt△CEF中,,解得x=,綜上所述,BE的長為或8或或.【考點】本題考查了折疊的性質、矩形的性質、勾股定理、正方形的判定與性質等知識;熟練掌握折疊和矩形的性質是解決問題的關鍵.4、【解析】【分析】取AD的中點N.連接EN,EC,GN,作EH⊥CB交CB的延長線于H.根據菱形的性質,可得△ADB是等邊三角形,從而得到△AEN是等邊三角形,可證得△AEF≌△NEG,進而得到點G的運動軌跡是射線NG,繼而得到GD+GC=GE+GC≥EC,在Rt△BEH和Rt△ECH中,由勾股定理,即可求解.【詳解】如圖,取AD的中點N.連接EN,EC,GN,作EH⊥CB交CB的延長線于H.∵四邊形ABCD是菱形∴AD=AB,∵∠A=60°,∴△ADB是等邊三角形,∴AD=BD,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等邊三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GND=180°﹣60°﹣60°=60°,∴點G的運動軌跡是射線NG,∴D,E關于射線NG對稱,∴GD=GE,∴GD+GC=GE+GC≥EC,在Rt△BEH中,∠H=90°,BE=1,∠EBH=60°,∴BH=BE=,EH=,在Rt△ECH中,EC==,∴GD+GC≥,∴GD+GC的最小值為.故答案為:.【考點】本題主要考查了菱形的性質,等邊三角形的判定和性質,全等三角形的判定和性質,勾股定理等知識,熟練掌握菱形的性質,等邊三角形的判定和性質,全等三角形的判定和性質,勾股定理等知識是解題的關鍵.5、1【解析】【分析】利用整體的思想以及根與系數的關系即可求出答案.【詳解】解:設x+1=t,方程a(x+1)2+b(x+1)+1=0的兩根分別是x3,x4,∴at2+bt+1=0,由題意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3.故答案為1.【考點】本題考查根與系數的關系,解題的關鍵是熟練運用根與系數的關系,本題屬于基礎題型.6、【解析】【分析】根據題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數目以及能搭成一個三角形的情況數目,根據概率的計算方法,計算可得答案.【詳解】根據題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【考點】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數與總情況數之比.7、【解析】【分析】由折疊的性質,得DE=EF,AD=AF,然后求出AF=AD=10,則求出FC的長度,再根據勾股定理建立方程,即可求出答案.【詳解】解:∵四邊形是長方形,由折疊的性質,,∵,又,在中,;故答案為:.【考點】本題考查了:①折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②矩形的性質,勾股定理求解.8、﹣3≤x≤且x≠.【解析】【分析】根據二次根式的性質,被開方數大于等于0;分母中有字母,分母不為0.【詳解】解:若代數式有意義,必有,解①得解②移項得兩邊平方得整理得解得③∴解集為﹣3≤x≤且x≠.故答案為:﹣3≤x≤且x≠.【考點】本題考查了二次根式的概念:式子(a≥0)叫二次根式,(a≥0)是一個非負數.注意:二次根式中的被開方數必須是非負數,否則二次根式無意義;當二次根式在分母上時還要考慮分母不等于零,此時被開方數大于0.9、或【解析】【分析】設門的寬為x尺,則門的高為(x+6)尺,利用勾股定理,即可得出關于x的一元二次方程,此題得解.【詳解】解:設門的寬為x尺,則門的高為(x+6)尺,依題意得:即或.故答案為:或.【考點】本題考查了由實際問題抽象出一元二次方程以及勾股定理的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.10、1【解析】【分析】把方程的根代入原方程得到,解得k的值,再根據一元二次方程成立滿足的條件進行取舍即可.【詳解】∵方程是一元二次方程,∴k+2≠0,即k≠-2;又0是該方程的一個根,∴,解得,,,由于k≠-2,所以,k=1.故答案為:1.【考點】本題考查了一元二次方程的解.解此類題時,要擅于觀察已知的是哪些條件,從而有針對性的選擇解題方法.同時要注意一元二次方程成立必須滿足的條件,這是容易忽略的地方.四、解答題1、見解析【解析】【分析】先根據四邊形是平行四邊形且得到平行四邊形是菱形,即可得到,再根據,,證明四邊形是平行四邊形,即可得到平行四邊形是矩形.【詳解】證明:∵四邊形是平行四邊形且∴平行四邊形是菱形∴,即又∵,.∴四邊形是平行四邊形,∴平行四邊形是矩形.【考點】本題主要考查了平行四邊形的判定,矩形的判定,菱形的性質與判定,解題的關鍵在于能夠熟練掌握相關知識進行求解.2、(1)見解析;(2)見解析;(3)2.59.【解析】【分析】(1)畫圖、測量可得;(2)依據表中的數據,描點、連線即可得;(3)由題意得出△CDF是等腰三角形時BE的長度即為y1與y2交點的橫坐標,據此可得答案.【詳解】(1)補全表格如下:x012345y15.04.123.613.614.125.00y201.412.834.245.657.07(2)函數圖象如下:(3)結合函數圖象2,解決問題:當△CDF為等腰三角形時,BE的長度約為2.5906,故答案為2.59.【考點】本題是四邊形的綜合問題,解題的關鍵是掌握函數思想的運用及函數圖象的畫法、數形結合思想的運用.3、-3【解析】【分析】首先根據根的判別式求出m的取值范圍,利用根與系數的關系可以求得方程的根的和與積,將+=1,轉化為關于m的方程,求出m的值并檢驗.【詳解】解:由題意知:α+β=?(2m?3)=3?2m,αβ=m2,由+=1,即可得,解得:m=1或m=?

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論