2022吉林省敦化市中考數(shù)學(xué)高分題庫帶答案詳解(A卷)_第1頁
2022吉林省敦化市中考數(shù)學(xué)高分題庫帶答案詳解(A卷)_第2頁
2022吉林省敦化市中考數(shù)學(xué)高分題庫帶答案詳解(A卷)_第3頁
2022吉林省敦化市中考數(shù)學(xué)高分題庫帶答案詳解(A卷)_第4頁
2022吉林省敦化市中考數(shù)學(xué)高分題庫帶答案詳解(A卷)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

吉林省敦化市中考數(shù)學(xué)高分題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,DC是⊙O的直徑,弦AB⊥CD于M,則下列結(jié)論不一定成立的是()A.AM=BM B.CM=DM C. D.2、如圖,與相切于點(diǎn),連接交于點(diǎn),點(diǎn)為優(yōu)弧上一點(diǎn),連接,,若,的半徑,則的長為()A.4 B. C. D.13、如圖,在中,,,若以點(diǎn)為圓心,的長為半徑的圓恰好經(jīng)過的中點(diǎn),則的長等于()A. B. C. D.4、方程y2=-a有實(shí)數(shù)根的條件是(

)A.a(chǎn)≤0 B.a(chǎn)≥0 C.a(chǎn)>0 D.a(chǎn)為任何實(shí)數(shù)5、為了解某地區(qū)九年級男生的身高情況,隨機(jī)抽取了該地區(qū)1000名九年級男生的身高數(shù)據(jù),統(tǒng)計結(jié)果如下.身高人數(shù)60260550130根據(jù)以上統(tǒng)計結(jié)果,隨機(jī)抽取該地區(qū)一名九年級男生,估計他的身高不低于的概率是(

)A.0.32 B.0.55 C.0.68 D.0.87二、多選題(5小題,每小題3分,共計15分)1、下列圖案中,是中心對稱圖形的是(

)A. B. C. D.2、下列命題正確的是(

)A.垂直于弦的直徑平分弦所對的兩條弧 B.弦的垂直平分線經(jīng)過圓心C.平分弦的直徑垂直于弦 D.平分弦所對的兩條弧的直線垂直于弦3、若關(guān)于的一元二次方程的兩個實(shí)數(shù)根分別是,且滿足,則的值不可能為(

)A.或 B. C. D.不存在4、下列條件中,不能確定一個圓的是(

)A.圓心與半徑 B.直徑C.平面上的三個已知點(diǎn) D.三角形的三個頂點(diǎn)5、如圖,AB是圓O的直徑,點(diǎn)G是圓上任意一點(diǎn),點(diǎn)C是的中點(diǎn),,垂足為點(diǎn)E,連接GA,GB,GC,GD,BC,GB與CD交于點(diǎn)F,則下列表述正確的是(

)A. B.C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、拋物線y=ax2+bx+c(a≠0)的部分圖象如圖所示,其與x軸的一個交點(diǎn)坐標(biāo)為(﹣3,0),對稱軸為x=﹣1,則當(dāng)y<0時,x的取值范圍是_____.2、如圖,在⊙O中,A,B,C是⊙O上三點(diǎn),如果∠AOB=70o,那么∠C的度數(shù)為_______.3、不透明袋子中裝有5個球,其中有2個紅球、3個黑球,這些球除顏色外無其他差別.從袋子中隨機(jī)取出1個球,則它是黑球的概率是________.4、如圖,點(diǎn)O是正方形ABCD的對稱中心,射線OM,ON分別交正方形的邊AD,CD于E,F(xiàn)兩點(diǎn),連接EF,已知,.(1)以點(diǎn)E,O,F(xiàn),D為頂點(diǎn)的圖形的面積為_________;(2)線段EF的最小值是_________.5、如圖,AB為的弦,半徑于點(diǎn)C.若,,則的半徑長為______.四、簡答題(2小題,每小題10分,共計20分)1、拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)C的坐標(biāo)為(0,﹣3).點(diǎn)P為拋物線y=x2+bx+c上的一個動點(diǎn).過點(diǎn)P作PD⊥x軸于點(diǎn)D,交直線BC于點(diǎn)E.(1)求b、c的值;(2)設(shè)點(diǎn)F在拋物線y=x2+bx+c的對稱軸上,當(dāng)△ACF的周長最小時,直接寫出點(diǎn)F的坐標(biāo);(3)在第一象限,是否存在點(diǎn)P,使點(diǎn)P到直線BC的距離是點(diǎn)D到直線BC的距離的5倍?若存在,求出點(diǎn)P所有的坐標(biāo);若不存在,請說明理由.2、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點(diǎn)P從點(diǎn)A開始沿AD邊向點(diǎn)D以1cm/s的速度運(yùn)動,動點(diǎn)Q從點(diǎn)C開始沿CB邊向點(diǎn)B以2cm/s的速度運(yùn)動.P、Q分別從點(diǎn)A、C同時出發(fā),當(dāng)其中一個動點(diǎn)到達(dá)端點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動,設(shè)運(yùn)動時間為t(s).(1)當(dāng)t為何值時,四邊形PQCD為平行四邊形?(2)當(dāng)t為何值時,PQ與⊙O相切?五、解答題(4小題,每小題10分,共計40分)1、小明每天騎自行車.上學(xué),都要通過安裝有紅、綠燈的4個十字路口.假設(shè)每個路口紅燈和綠燈亮的時間相同.(1)小明從家到學(xué)校,求通過前2個十字路口時都是綠燈的概率.(請用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)(2)小明從家到學(xué)校,通過這4個十字路口時至少有2個綠燈的概率為.(請直接寫出答案)2、如圖,以四邊形的對角線為直徑作圓,圓心為,點(diǎn)、在上,過點(diǎn)作的延長線于點(diǎn),已知平分.(1)求證:是切線;(2)若,,求的半徑和的長.3、如圖,CD是⊙O的直徑,∠EOD=84°,AE交⊙O于點(diǎn)B,且AB=OB,求∠A的度數(shù).4、4張相同的卡片上分別寫有數(shù)字0、1、、3,將卡片的背面朝上,洗后從中任意抽取1張,將卡片上的數(shù)字記錄下來;再從余下的3張卡片中任意抽取1張,同樣將卡片上的數(shù)字記錄下來.(1)第一次抽取的卡片上數(shù)字是非負(fù)數(shù)的概率為______;(2)小敏設(shè)計了如下游戲規(guī)則:當(dāng)?shù)谝淮斡涗浵聛淼臄?shù)字減去第二次記錄下來的數(shù)字所得結(jié)果為非負(fù)數(shù)時,甲獲勝;否則,乙獲勝.小敏設(shè)計的游戲規(guī)則公平嗎?為什么?(請用樹狀圖或列表等方法說明理由)-參考答案-一、單選題1、B【分析】根據(jù)垂徑定理“垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧”進(jìn)行判斷即可得.【詳解】解:∵弦AB⊥CD,CD過圓心O,∴AM=BM,,,即選項A、C、D選項說法正確,不符合題意,當(dāng)根據(jù)已知條件得CM和DM不一定相等,故選B.【點(diǎn)睛】本題考查了垂徑定理,解題的關(guān)鍵是掌握垂徑定理.2、B【分析】連接OB,根據(jù)切線性質(zhì)得∠ABO=90°,再根據(jù)圓周角定理求得∠AOB=60°,進(jìn)而求得∠A=30°,然后根據(jù)含30°角的直角三角形的性質(zhì)解答即可.【詳解】解:連接OB,∵AB與相切于點(diǎn)B,∴∠ABO=90°,∵∠BDC=30°,∴∠AOB=2∠BDC=60°,在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,∴OA=2OB=4,∴,故選:B.【點(diǎn)睛】本題考查切線的性質(zhì)、圓周角定理、直角三角形的銳角互余、含30°角的直角三角形性質(zhì)、勾股定理,熟練掌握相關(guān)知識的聯(lián)系與運(yùn)用是解答的關(guān)鍵.3、D【分析】連接CD,由直角三角形斜邊中線定理可得CD=BD,然后可得△CDB是等邊三角形,則有BD=BC=5cm,進(jìn)而根據(jù)勾股定理可求解.【詳解】解:連接CD,如圖所示:∵點(diǎn)D是AB的中點(diǎn),,,∴,∵,∴,在Rt△ACB中,由勾股定理可得;故選D.【點(diǎn)睛】本題主要考查圓的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理,熟練掌握圓的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)平方的非負(fù)性可以得出﹣a≥0,再進(jìn)行整理即可.【詳解】解:∵方程y2=﹣a有實(shí)數(shù)根,∴﹣a≥0(平方具有非負(fù)性),∴a≤0;故選:A.【考點(diǎn)】此題考查了直接開平方法解一元二次方程,關(guān)鍵是根據(jù)已知條件得出﹣a≥0.5、C【解析】【分析】先計算出樣本中身高不低于170cm的頻率,然后根據(jù)利用頻率估計概率求解.【詳解】解:樣本中身高不低于170cm的頻率,所以估計抽查該地區(qū)一名九年級男生的身高不低于170cm的概率是0.68.故選:C.【考點(diǎn)】本題考查了利用頻率估計概率:大量重復(fù)實(shí)驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實(shí)驗次數(shù)的增多,值越來越精確.二、多選題1、ABD【解析】【分析】在平面內(nèi),把一個圖形繞著某個點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,這個圖形就是中心對稱圖形,根據(jù)定義判斷即可.【詳解】、是中心對稱圖形,選項正確;B、是中心對稱圖形,選項正確;C、不是中心對稱圖形,選項錯誤;D、是中心對稱圖形,選項正確.故選:ABD【考點(diǎn)】本題考查中心對稱圖形的定義,牢記定義是解題關(guān)鍵.2、ABD【解析】【分析】根據(jù)垂徑定理及其推論進(jìn)行判斷即可.【詳解】A、垂直于弦的直徑平分弦所對的兩條弧,正確;B、弦的垂直平分線經(jīng)過圓心,正確;C、平分弦(不是直徑)的直徑垂直于弦,故錯誤;D、平分弦所對的兩條弧的直線垂直于弦,正確;故選ABD.【考點(diǎn)】本題考查了垂徑定理:熟練掌握垂徑定理及其推論是解決問題的關(guān)鍵.3、ABD【解析】【分析】利用可得,從而得到,解出k結(jié)合根的判別式即可求解.【詳解】解:∵于的一元二次方程的兩個實(shí)數(shù)根分別是,,∴,∵,∴,即,解得:,當(dāng)時,,∴此時方程無實(shí)數(shù)根,不合題意,舍去,當(dāng)時,,∴此時方程有兩個不相等實(shí)數(shù)根,∴的值為.故選:ABD.【考點(diǎn)】本題主要考查了一元二次方程根與系數(shù)的關(guān)系,熟練掌握若一元二次方程的兩個實(shí)數(shù)根分別是,,則是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)不在同一條直線上的三個點(diǎn)確定一個圓,已知圓心和直徑所作的圓是唯一的進(jìn)行判斷即可得出答案.【詳解】解:A、已知圓心與半徑能確定一個圓,不符合題意;B、已知直徑能確定一個圓,不符合題意;C、平面上的三個已知點(diǎn),不能確定一個圓,符合題意;D、已知三角形的三個頂點(diǎn),能確定一個圓,不符合題意;故選C.【考點(diǎn)】本題考查了確定圓的條件,解題的關(guān)鍵是分類討論.5、ACD【解析】【分析】根據(jù)垂徑定理和圓周角定理可以判斷A,根據(jù)圓周角定理可以判斷B,根據(jù)圓周角定理、垂徑定理以及等角對等邊,即可判斷C,根據(jù)圓周角定理、垂徑定理以及平行線的判定,即可判斷D.【詳解】解:∵AB是圓O的直徑,,∴,∴,故A正確;∵AB是圓O的直徑,,∴,∵,即,也沒有其他條件可以證得和的另外一組內(nèi)角對應(yīng)相等,∴不能證得,故B不正確;∵點(diǎn)C是的中點(diǎn),∴,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故C正確;∵點(diǎn)C是的中點(diǎn),∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故D正確.故選ACD.【考點(diǎn)】本題主要考查了垂徑定理、圓周角定理、等腰三角形的判定以及平行線的判定.三、填空題1、﹣3<x<1【解析】【分析】根據(jù)拋物線與x軸的一個交點(diǎn)坐標(biāo)和對稱軸,由拋物線的對稱性可求拋物線與x軸的另一個交點(diǎn),再根據(jù)拋物線的增減性可求當(dāng)y<0時,x的取值范圍.【詳解】解:∵拋物線y=ax2+bx+c(a≠0)與x軸的一個交點(diǎn)為(﹣3,0),對稱軸為x=﹣1,∴拋物線與x軸的另一個交點(diǎn)為(1,0),由圖象可知,當(dāng)y<0時,x的取值范圍是﹣3<x<1.故答案為:﹣3<x<1.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì)和數(shù)形結(jié)合能力,熟練掌握并靈活運(yùn)用是解題的關(guān)鍵.2、35°【分析】利用圓周角定理求出所求角度數(shù)即可.【詳解】解:與都對,且,,故答案為:.【點(diǎn)睛】本題考查了圓周角定理,解題的關(guān)鍵是熟練掌握圓周角定理.3、【分析】根據(jù)概率公式計算即可【詳解】共有個球,其中黑色球3個從中任意摸出一球,摸出白色球的概率是.故答案為:【點(diǎn)睛】本題考查了簡單概率公式的計算,熟悉概率公式是解題的關(guān)鍵.4、

1

【解析】【分析】(1)連接AO,DO,證明,可得,求出即可求解;(2)設(shè),則,由勾股定理可得,即可求EF的最小值.【詳解】解:(1)連接AO,DO,∵,∴,∵四邊形ABCD是正方形,O是中心,∴,,,∴,∴,∴,∴,∵,∴,∴故答案為:1;(2)設(shè),則,,在中,,∴當(dāng)時,EF有最小值,故答案為:.【考點(diǎn)】本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)求最值的方法是解題的關(guān)鍵.5、5【分析】先根據(jù)垂徑定理求出AC的長,設(shè)⊙O的半徑為r,再連接OA,在Rt△OAC中利用勾股定理求出r的值即可.【詳解】解:∵⊙O的弦AB=8,半徑OD⊥AB,∴AC=AB=×8=4,設(shè)⊙O的半徑為r,則OC=r-CD=r-2,連接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案為:5【點(diǎn)睛】本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.四、簡答題1、(1)(2)(3)存在,P的坐標(biāo)為【解析】【分析】(1)把A、C點(diǎn)的坐標(biāo)代入拋物線的解析式列出b、c的方程組,解得b、c便可.(2)連接BC與對稱軸交于點(diǎn)F,此時ΔACF的周長最小,求得BC的解析式,再求得BC與對稱軸的交點(diǎn)坐標(biāo)便可.(3)設(shè)P(m,m2-2m-3)(m>3),根據(jù)相似三角形的比例式列出m的方程解答便可.(1)解:把A、C點(diǎn)的坐標(biāo)代入拋物線的解析式得,解得(2)解:直線BC與拋物線的對稱軸交于點(diǎn)F,連接AF,如圖1,此時,AF+CF=BF+CF=BC的值最小,∵AC為定值,∴此時ΔAFC的周長最小,由(1)知,∴拋物線的解析式為:∴對稱軸為直線令,得解得或設(shè)直線BC的解析式為得解得∴直線BC的解析式為:∴當(dāng)時,(3)解:設(shè)P(m,m2-2m-3)(m>3),過P作PH⊥BC于H,過D作DG⊥BC于G,如圖2,則PH=5DG,E(m,m-3),∴PE=m2-3m,DE=m-3,解得m=3或m=5,經(jīng)檢驗,,即故m=5∴點(diǎn)P的坐標(biāo)為P(5,12).故存在點(diǎn)P,使點(diǎn)P到直線BC的距離是點(diǎn)D到直線BC的距離的5倍,其P點(diǎn)坐標(biāo)為【考點(diǎn)】本題是二次函數(shù)的綜合題,主要考查了待定系數(shù)法,二次函數(shù)的圖象與性質(zhì),相似三角形的性質(zhì)與判定,軸對稱的性質(zhì)應(yīng)用求線段的最值,第(2)題關(guān)鍵是確定F的位置,第(3)題關(guān)鍵在于構(gòu)建相似三角形.2、(1)當(dāng)時,四邊形PQCD為平行四邊形;(2)當(dāng)t=2秒時,PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設(shè)PQ與⊙O相切于點(diǎn)H過點(diǎn)P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當(dāng)時,四邊形PQCD為平行四邊形;(2)設(shè)PQ與⊙O相切于點(diǎn)H過點(diǎn)P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB為⊙O的直徑,∠ABC=∠DAB=90°,∴AD、BC為⊙O的切線,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD邊運(yùn)動的時間為秒.∵t=9>8,∴t=9(舍去),∴當(dāng)t=2秒時,PQ與⊙O相切.【考點(diǎn)】本題主要考查了切線長定理,矩形的性質(zhì)與判定,勾股定理,平行四邊形的性質(zhì)等等,解題的關(guān)鍵在于能夠熟練掌握切線長定理.五、解答題1、(1),見解析(2)【解析】(1)列表如下第一個十字路口\第二個紅燈綠燈紅燈紅紅紅綠綠燈綠紅綠綠∵共有4種等可能情形,滿足條件的有1種.∴通過前2個十字路口時都是綠燈的概率.(2)畫樹狀圖如圖,表示紅燈,表示綠燈,∵共有16種等可能情形,滿足條件的有11種.小明從家到學(xué)校,通過這4個十字路口時至少有2個綠燈的概率為故答案為:【點(diǎn)睛】本題考查了列表法或畫樹狀圖法求概率,掌握列表法或畫樹狀圖法是解題的關(guān)鍵.2、(1)證明見解析(2)【分析】(1)連接OA,根據(jù)已知條件證明OA⊥AE即可解決問題;(2)取CD中點(diǎn)F,連接OF,根據(jù)垂徑定理可得OF⊥CD,所以四邊形AEFO是矩形,利用勾股定理即可求出結(jié)果.(1)證明:如圖,連接OA,∵AE⊥CD,∴∠DAE+∠ADE=90°.∵DA平分∠BDE,∴∠A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論