2023山東省章丘市中考數(shù)學高頻難、易錯點題含答案詳解(預熱題)_第1頁
2023山東省章丘市中考數(shù)學高頻難、易錯點題含答案詳解(預熱題)_第2頁
2023山東省章丘市中考數(shù)學高頻難、易錯點題含答案詳解(預熱題)_第3頁
2023山東省章丘市中考數(shù)學高頻難、易錯點題含答案詳解(預熱題)_第4頁
2023山東省章丘市中考數(shù)學高頻難、易錯點題含答案詳解(預熱題)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省章丘市中考數(shù)學高頻難、易錯點題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,為正六邊形邊上一動點,點從點出發(fā),沿六邊形的邊以1cm/s的速度按逆時針方向運動,運動到點停止.設(shè)點的運動時間為,以點、、為頂點的三角形的面積是,則下列圖像能大致反映與的函數(shù)關(guān)系的是()A. B.C. D.2、已知菱形ABCD的對角線交于原點O,點A的坐標為,點B的坐標為,則點D的坐標是()A. B. C. D.3、5個紅球、4個白球放入一個不透明的盒子里,從中摸出6個球,恰好紅球與白球都摸到,這個事件()A.不可能發(fā)生 B.可能發(fā)生 C.很可能發(fā)生 D.必然發(fā)生4、若m,n是方程x2-x-2022=0的兩個根,則代數(shù)式(m2-2m-2022)(-n2+2n+2022)的值為(

)A.2023 B.2022 C.2021 D.20205、如圖,在Rt△ABC中,,,點D、E分別是AB、AC的中點.將△ADE繞點A順時針旋轉(zhuǎn)60°,射線BD與射線CE交于點P,在這個旋轉(zhuǎn)過程中有下列結(jié)論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點P運動的路徑長為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④二、多選題(5小題,每小題3分,共計15分)1、已知,為半徑是3的圓周上兩點,為的中點,以線段,為鄰邊作菱形,頂點恰在該圓直徑的三等分點上,則該菱形的邊長為(

)A. B. C. D.2、如圖,O是正△ABC內(nèi)一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論中正確的結(jié)論是()A.△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到B.點O與O′的距離為4C.∠AOB=150°D.S四邊形AOBO′=6+3E.S△AOC+S△AOB=6+3、如圖,是的直徑,,交于點,交于點,是的中點,連接.則下列結(jié)論正確的是(

)A. B. C. D.是的切線4、運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論正確的是(

)A.足球距離地面的最大高度為20mB.足球飛行路線的對稱軸是直線C.足球被踢出9s時落地D.足球被踢出1.5s時,距離地面的高度是11m5、如圖,如果AB為⊙O的直徑,弦CD⊥AE,垂足為E,那么下列結(jié)論中,正確的是(

)A. B.弧BC=弧BD C.∠BAC=∠BAD D.AC>AD第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,把△ABC繞點C順時針旋轉(zhuǎn)25°,得到△A′B′C,A′B′交AC于點D,若∠A′DC=90°,則∠A度數(shù)為___________.2、已知如圖,AB=8,AC=4,∠BAC=60°,BC所在圓的圓心是點O,∠BOC=60°,分別在、線段AB和AC上選取點P、E、F,則PE+EF+FP的最小值為____________.3、某批青稞種子在相同條件下發(fā)芽試驗結(jié)果如下表:每次試驗粒數(shù)501003004006001000發(fā)芽頻數(shù)4796284380571948估計這批青稞發(fā)芽的概率是___________.(結(jié)果保留到0.01)4、拋物線的開口方向向______.5、若拋物線的圖像與軸有交點,那么的取值范圍是________.四、簡答題(2小題,每小題10分,共計20分)1、2022年冬奧會在北京召開,某網(wǎng)絡(luò)經(jīng)銷商購進了一批以冬奧會為主題的文化衫進行銷售,文化衫的進價為每件30元,當銷售單價定為70元時,每天可售出20件,每銷售一件需繳納網(wǎng)絡(luò)平臺管理費2元,為了擴大銷售,增加盈利,決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn):銷售單價每降低1元,則每天可多售出2件(銷售單價不低于進價),若設(shè)這款文化衫的銷售單價為x(元),每天的銷售量為y(件).(1)求每天的銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)當銷售單價為多少元時,銷售這款文化衫每天所獲得的利潤最大,最大利潤為多少元?2、如圖,拋物線y=a(x﹣2)2+3(a為常數(shù)且a≠0)與y軸交于點A(0,).(1)求該拋物線的解析式;(2)若直線y=kx(k≠0)與拋物線有兩個交點,交點的橫坐標分別為x1,x2,當x12+x22=10時,求k的值;(3)當﹣4<x≤m時,y有最大值,求m的值.五、解答題(4小題,每小題10分,共計40分)1、如圖,已知點在上,點在外,求作一個圓,使它經(jīng)過點,并且與相切于點.(要求寫出作法,不要求證明)2、如圖,ABC是⊙O的內(nèi)接三角形,,,連接AO并延長交⊙O于點D,過點C作⊙O的切線,與BA的延長線相交于點E.(1)求證:AD∥EC;(2)若AD=6,求線段AE的長.3、如圖,兩個圓都以點O為圓心,大圓的弦交小圓于兩點.求證:.4、如圖,在直角坐標系中,將△ABC繞點A順時針旋轉(zhuǎn)90°.(1)畫出旋轉(zhuǎn)后的△AB1C1,并寫出B1、C1的坐標;(2)求線段AB在旋轉(zhuǎn)過程中掃過的面積.-參考答案-一、單選題1、A【分析】設(shè)正六邊形的邊長為1,當在上時,過作于而求解此時的函數(shù)解析式,當在上時,延長交于點過作于并求解此時的函數(shù)解析式,當在上時,連接并求解此時的函數(shù)解析式,由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,從而可得答案.【詳解】解:設(shè)正六邊形的邊長為1,當在上時,過作于而當在上時,延長交于點過作于同理:則為等邊三角形,當在上時,連接由正六邊形的性質(zhì)可得:由正六邊形的對稱性可得:而由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,所以符合題意的是A,故選A【點睛】本題考查的是動點問題的函數(shù)圖象,銳角三角函數(shù)的應(yīng)用,正多邊形的性質(zhì),清晰的分類討論是解本題的關(guān)鍵.2、A【分析】根據(jù)菱形是中心對稱圖形,菱形ABCD的對角線交于原點O,則點與點關(guān)于原點中心對稱,根據(jù)中心對稱的點的坐標特征進行求解即可【詳解】解:∵菱形是中心對稱圖形,菱形ABCD的對角線交于原點O,∴與點關(guān)于原點中心對稱,點B的坐標為,點D的坐標是故選A【點睛】本題考查了菱形的性質(zhì),求關(guān)于原點中心對稱的點的坐標,掌握菱形的性質(zhì)是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)事件的可能性判斷相應(yīng)類型即可.【詳解】5個紅球、4個白球放入一個不透明的盒子里,由于紅球和白球的個數(shù)都小于6,從中摸出6個球,恰好紅球與白球都摸到,是必然事件.故選:D.【考點】本題考查的是可能性大小的判斷,解決這類題目要注意具體情況具體對待.一般地必然事件的可能性大小為1,不可能事件發(fā)生的可能性大小為0,隨機事件發(fā)生的可能性大小在0至1之間.4、B【解析】【詳解】解:∵m、n是方程x2-x-2022=0的兩個根,∴m2-m-2022=0,n2-n-2022=0,mn=-2022,∴m2-m=2022,n2-n=2022,∴(m2-2m-2022)(-n2+2n+2022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故選:B.【考點】本題考查了一元二次方程的解的定義和一元二次方程根與系數(shù)的關(guān)系,能根據(jù)已知條件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此題的關(guān)鍵.5、B【分析】根據(jù),,點D、E分別是AB、AC的中點.得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當CP為⊙A的切線時,CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點為O,連結(jié)AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,L可判斷④點P運動的路徑長為正確即可.【詳解】解:∵,,點D、E分別是AB、AC的中點.∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當CP為⊙A的切線時,CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點為O,連結(jié)AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點P運動的路徑長為正確;正確的是①②④.故選B.【點睛】本題考查圖形旋轉(zhuǎn)性質(zhì),線段中點定義,三角形全等判定與性質(zhì),圓的切線,正方形判定與性質(zhì),勾股定理,銳角三角函數(shù),弧長公式,本題難度大,利用輔助線最長準確圖形是解題關(guān)鍵.二、多選題1、BD【解析】【分析】過B作直徑,連接AC交AO與E,再根據(jù)兩種情況求出BD的兩個長度,再求得OD,OE,DE的值連接OD,根據(jù)勾股定理得到結(jié)論.【詳解】∵點B為的中點∴BD⊥AC①如圖∵點D恰再該圓直徑的三等分點上∴BD==2∴OD=OB-BD=1∵四邊形ABCD是菱形∴DE==1∴OE=2連接OC∵CE==∴邊CD=②如下圖BD==4同理可得,OD=1,OE=1,DE=2,連接OC,∵CE==∴CD=故選:BD【考點】本題考查了圓心角,弧,弦的關(guān)系,勾股定理,菱形的性質(zhì),正確地作出圖形是解題的關(guān)鍵.2、ABCE【解析】【分析】證明可判斷證明是等邊三角形,可判斷利用是等邊三角形,證明可判斷由是等邊三角形,可得四邊形的面積,可判斷如圖,將繞點逆時針旋轉(zhuǎn)與重合,對應(yīng),同理可得:是邊長為的等邊三角形,是邊長為的直角三角形,從而可判斷【詳解】解:由題意得:為等邊三角形,△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到,故符合題意;如圖,連接,由是等邊三角形,則點O與O′的距離為4,故符合題意;故符合題意;如圖,過作于是等邊三角形,S四邊形AOBO′=故不符合題意;如圖,將繞點逆時針旋轉(zhuǎn)與重合,對應(yīng),同理可得:是邊長為的等邊三角形,是邊長為的直角三角形,同理可得:故符合題意;故選:【考點】本題考查的是等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理與勾股定理的逆定理的應(yīng)用,全等三角形的判定與性質(zhì),熟練的做出正確的輔助線是解題的關(guān)鍵.3、BCD【解析】【分析】首先由是的直徑,得出,推出,根據(jù)是的中點,得出是的中位線,得到,,再由,推出是的中位線,得,即是的切線,最后由假設(shè)推出不正確.【詳解】解:連接,.是的直徑,(直徑所對的圓周角是直角),;而在中,,是邊上的中線,選項符合題意);是的直徑,,,,,,選項符合題意),是的中位線,即:,是的中點,是的中位線,,.是的切線選項符合題意);只有當是等腰直角三角形時,,故選項錯誤,不符合題意,故選:BCD.【考點】本題考查的知識點是切線的判定與性質(zhì)、等腰三角形的性質(zhì)及圓周角定理,解題的關(guān)鍵是運用等腰三角形性質(zhì)及圓周角定理及切線性質(zhì)作答.4、BC【解析】【分析】由題意,拋物線經(jīng)過(0,0),(9,0),所以可以假設(shè)拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯誤,∴拋物線的對稱軸t=4.5,故B正確,∵t=9時,h=0,∴足球被踢出9s時落地,故C正確,∵t=1.5時,h=11.25,故D錯誤.∴正確的有②③,故選:BC【考點】本題考查二次函數(shù)的應(yīng)用、求出拋物線的解析式是解題的關(guān)鍵,屬于中考??碱}型.5、ABC【解析】【分析】根據(jù)垂徑定理逐個判斷即可.【詳解】解:AB為⊙O的直徑,弦CD⊥AB垂足為E,則AB是垂直于弦CD的直徑,就滿足垂徑定理,因而CE=DE,弧BC=弧BD,∠BAC=∠BAD都是正確的.根據(jù)條件可以得到AB是CD的垂直平分線,因而AC=AD.所以D是錯誤的.故選:ABC.【考點】本題主要考查的是對垂徑定理的記憶與理解,做題的關(guān)鍵是掌握垂徑定理的應(yīng)用.三、填空題1、65°【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),可得知,從而求得的度數(shù),又因為的對應(yīng)角是,即可求出的度數(shù).【詳解】繞著點時針旋轉(zhuǎn),得到,的對應(yīng)角是故答案為:.【考點】此題考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是正確確定對應(yīng)角.2、12【分析】如圖,連接BC,AO,作點P關(guān)于AB的對稱點M,作點P關(guān)于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,想辦法求出MN的最小值即可解決問題.【詳解】解:如圖,連接BC,AO,作點P關(guān)于AB的對稱點M,作點P關(guān)于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,∴當MN的值最小時,△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴當PA的值最小時,MN的值最小,取AB的中點J,連接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等邊三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵當點P在直線OA上時,PA的值最小,最小值為-,∴MN的最小值為?(-)=-12.故答案:-12.【點睛】本題考查了圓周角定理,垂徑定理,軸對稱-最短問題等知識,解題的關(guān)鍵是學會利用軸對稱解決最短問題,屬于中考填空題中的壓軸題.3、0.95【解析】【分析】利用大量重復試驗下事件發(fā)生的頻率可以估計該事件發(fā)生的概率直接回答即可.【詳解】觀察表格得到這批青稞發(fā)芽的頻率穩(wěn)定在0.95附近,則這批青稞發(fā)芽的概率的估計值是0.95,故答案為:0.95.【考點】此題考查了利用頻率估計概率,從表格中的數(shù)據(jù)確定出這種油菜籽發(fā)芽的頻率是解本題的關(guān)鍵.4、下【解析】【分析】根據(jù)二次函數(shù)二次項系數(shù)的大小判斷即可;【詳解】∵,∴拋物線開口向下;故答案是下.【考點】本題主要考查了判斷拋物線的開口方向,準確分析判斷是解題的關(guān)鍵.5、【解析】【分析】由拋物線的圖像與軸有交點可知,從而可求得的取值范圍.【詳解】解:∵拋物線的圖像與軸有交點∴令,有,即該方程有實數(shù)根∴∴.故答案是:【考點】本題考查了二次函數(shù)與軸的交點情況與一元二次方程分的情況的關(guān)系、解一元一次不等式,能由已知條件列出關(guān)于的不等式是解題的關(guān)鍵.四、簡答題1、(1);(2)當銷售單價為56元時,每天所獲得的利潤最大,最大利潤為1152元【解析】【分析】(1)根據(jù)“銷售單價每降低1元,則每天可多售出2件”列函數(shù)關(guān)系式;(2)根據(jù)總利潤=單件利潤×銷售量列出函數(shù)關(guān)系式,然后利用二次函數(shù)的性質(zhì)分析其最值.【詳解】解:(1)由題意可得:,整理,得:,每天的銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為;(2)設(shè)銷售所得利潤為w,由題意可得:,整理,得:,,當時,w取最大值為1152,當銷售單價為56元時,銷售這款文化衫每天所獲得的利潤最大,最大利潤為1152元.【考點】此題考查二次函數(shù)的應(yīng)用——銷售問題,涉及運算能力及一次函數(shù)應(yīng)用,熟練掌握相關(guān)知識是解題的關(guān)鍵.2、(1);(2);(3)【解析】【分析】(1)把代入拋物線的解析式,解方程求解即可;(2)聯(lián)立兩個函數(shù)的解析式,消去得:再利用根與系數(shù)的關(guān)系與可得關(guān)于的方程,解方程可得答案;(3)先求解拋物線的對稱軸方程,分三種情況討論,當<<結(jié)合函數(shù)圖象,利用函數(shù)的最大值列方程,再解方程即可得到答案.【詳解】解:(1)把代入中,拋物線的解析式為:(2)聯(lián)立一次函數(shù)與拋物線的解析式得:整理得:∵x1+x2=4-3k,x1?x2=-3,∴x12+x22=(4-3k)2+6=10,解得:∴(3)∵函數(shù)的對稱軸為直線x=2,當m<2時,當x=m時,y有最大值,=-(m-2)2+3,解得m=±,∴m=-,當m≥2時,當x=2時,y有最大值,∴=3,∴m=,綜上所述,m的值為-或.【考點】本題考查的是利用待定系數(shù)法求解拋物線的解析式,拋物線與軸的交點坐標,一元二次方程根與系數(shù)的關(guān)系,二次函數(shù)的增減性,掌握數(shù)形結(jié)合的方法與分類討論是解題的關(guān)鍵.五、解答題1、見解析【解析】【分析】先確定圓心,再確定圓的半徑,畫圓即可.【詳解】解:如圖,①連接、,②作線段的垂直平分線交的延長線于一點,交點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論