2022福建省南安市中考數(shù)學試卷含完整答案詳解(網(wǎng)校專用)_第1頁
2022福建省南安市中考數(shù)學試卷含完整答案詳解(網(wǎng)校專用)_第2頁
2022福建省南安市中考數(shù)學試卷含完整答案詳解(網(wǎng)校專用)_第3頁
2022福建省南安市中考數(shù)學試卷含完整答案詳解(網(wǎng)校專用)_第4頁
2022福建省南安市中考數(shù)學試卷含完整答案詳解(網(wǎng)校專用)_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省南安市中考數(shù)學試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、在平面直角坐標系中,將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應的函數(shù)表達式為(

)A. B. C. D.2、如圖,一個油桶靠在直立的墻邊,量得并且則這個油桶的底面半徑是()A. B. C. D.3、如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,過點C作⊙O的切線,交AB的延長線于點D.設∠A=α,∠D=β,則()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°4、設方程的兩根分別是,則的值為(

)A.3 B. C. D.5、下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、如圖,是的直徑,,是上的點,且,分別與,相交于點,,則下列結論一定成立的是(

)A. B. C.平分D. E.2、在圖所示的4個圖案中不包含圖形的旋轉的是(

)A. B. C. D.3、下列關于x的一元二次方程中,沒有兩個不相等的實數(shù)根的方程是(

)A. B. C. D.4、如圖,的內切圓(圓心為點O)與各邊分別相切于點D,E,F(xiàn),連接.以點B為圓心,以適當長為半徑作弧分別交于G,H兩點;分別以點G,H為圓心,以大于的長為半徑作弧,兩條弧交于點P;作射線.下列說法正確的是(

)A.射線一定過點O B.點O是三條中線的交點C.若是等邊三角形,則 D.點O不是三條邊的垂直平分線的交點5、如圖是二次函數(shù)圖象的一部分,過點,,對稱軸為直線.則錯誤的有(

)A. B. C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,、分別與相切于A、B兩點,若,則的度數(shù)為________.2、已知拋物線與x軸的一個交點為,則代數(shù)式的值為______.3、如圖,正方形ABCD的邊長為6,點E在邊CD上.以點A為中心,把△ADE順時針旋轉90°至△ABF的位置.若DE=2,則FE=___.4、如圖,△ABC和△DEC關于點C成中心對稱,若AC=1,AB=2,∠BAC=90°,則AE的長是_________.5、如圖,⊙O的半徑為2,△ABC是⊙O的內接三角形,連接OB、OC,若弦BC的長度為,則∠BAC=________度.四、簡答題(2小題,每小題10分,共計20分)1、如圖,在平面直角坐標系中,已知拋物線與軸交于,兩點,與軸交于點,連接.(1)求拋物線的解析式;(2)點在拋物線的對稱軸上,當?shù)闹荛L最小時,點的坐標為_____________;(3)點是第四象限內拋物線上的動點,連接和.求面積的最大值及此時點的坐標;(4)若點是對稱軸上的動點,在拋物線上是否存在點,使以點、、、為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標;若不存在,請說明理由.2、如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD=1m,窗高CD=1.5m,并測得OE=1m,OF=5m,求圍墻AB的高度.五、解答題(4小題,每小題10分,共計40分)1、根據(jù)下列條件,求二次函數(shù)的解析式.(1)圖象經(jīng)過(0,1),(1,﹣2),(2,3)三點;(2)圖象的頂點(2,3),且經(jīng)過點(3,1);2、用指定方法解下列方程:(1)2x2-5x+1=0(公式法);(2)x2-8x+1=0(配方法).3、從一副普通的撲克牌中取出四張牌,它們的牌面數(shù)字分別為.將這四張撲克牌背面朝上,洗勻.(1)從中隨機抽取一張,則抽取的這張牌的牌面數(shù)字能被3整除的概率是________;(2)從中隨機抽取一張,不放回,再從剩余的三張牌中隨機抽取一張.①利用畫樹狀圖或列表的方法,寫出取出的兩張牌的牌面數(shù)字所有可能的結果;②求抽取的這兩張牌的牌面數(shù)字之和是偶數(shù)的概率.4、頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經(jīng)過點C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關系式,并求S的最大值;(3)點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.-參考答案-一、單選題1、B【解析】【分析】先求出平移后拋物線的頂點坐標,進而即可得到答案.【詳解】解:∵的頂點坐標為(0,0)∴將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點坐標為(-2,1),∴所得拋物線對應的函數(shù)表達式為,故選B【考點】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點坐標或掌握“左加右減,上加下減”,是解題的關鍵.2、C【解析】【分析】根據(jù)切線的性質,連接過切點的半徑,構造正方形求解即可.【詳解】如圖所示:設油桶所在的圓心為O,連接OA,OC,∵AB、BC與⊙O相切于點A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四邊形OABC是正方形,∴OA=AB=BC=OC=0.8m,故選:C.【考點】考查了切線的性質和正方形的判定、性質,解題關鍵是理解和掌握切線的性質.3、C【解析】【分析】連接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切線,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【詳解】連接OC,如圖,∵⊙O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故選:C.【考點】本題考查圓的半徑相等,三角形外角性質,切線性質,直角三角形兩銳角互余性質,掌握圓的半徑相等,三角形外角性質,切線性質,直角三角形兩銳角互余性質.4、A【解析】【分析】本題可利用韋達定理,求出該一元二次方程的二次項系數(shù)以及一次項系數(shù)的值,代入公式求解即可.【詳解】由可知,其二次項系數(shù),一次項系數(shù),由韋達定理:,故選:A.【考點】本題考查一元二次方程根與系數(shù)的關系,求解時可利用常規(guī)思路求解一元二次方程,也可以通過韋達定理提升解題效率.5、B【分析】把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,根據(jù)中心對稱圖形的概念求解.【詳解】A.不是中心對稱圖形,故本選項不符合題意;B.是中心對稱圖形,故本選項符合題意;C.不是中心對稱圖形,故本選項不符合題意;D.不是中心對稱圖形,故本選項不符合題意.故選:B.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.二、多選題1、ACDE【解析】【分析】根據(jù)直徑的性質,垂徑定理等知識一一判斷即可;【詳解】∵AB是直徑,∴∠ADB=90°,∴AD⊥BD,故A正確;∵C,D是⊙O上的點,∴與不一定相等,∴∠A與∠CBA不一定相等,∵OB=OC,∴∠C=∠CBA,∴∠A與∠C不一定相等,∵∠AOC=∠C+∠CBA∠AEC=∠A+∠CBA∴∠AOC與∠AEC不一定相等,故B選項錯誤;∵OC∥BD,BD⊥AD,∴OC⊥AD,∴,AF=DF,故D正確∴∠ABC=∠CBD,即CB平分∠ABD,故C正確,∵AF=DF,AO=OB,∴BD=2OF,故E正確,故選:ACDE.【考點】本題考查直徑的性質、垂徑定理、平行線的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.2、AC【解析】【分析】根據(jù)中心對稱與軸對稱的概念,即可求解.【詳解】解:A、是軸對稱圖形,故本選項符合題意;B、是中心對稱圖形,屬于圖形的旋轉,故本選項不符合題意;C、是軸對稱圖形,故本選項符合題意;D、既是軸對稱圖形,也是中心對稱圖形,包含圖形的旋轉,故本選項不符合題意;故選:AC.【考點】本題主要考查了中心對稱與軸對稱的概念,熟練掌握軸對稱圖形的關鍵是尋找對稱軸,圖象沿對稱軸折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合是解題的關鍵.3、ABC【解析】【分析】根據(jù)根的判別式Δ=b2-4ac的值的符號,可以判定個方程實數(shù)根的情況,注意排除法在解選擇題中的應用.【詳解】解:A、∵Δ=b2-4ac=02-4×1×4=-16<0,∴此方程沒有實數(shù)根,故本選項符合題意;B、∵Δ=b2-4ac=(-4)2-4×1×4=0,∴此方程有兩個相等的實數(shù)根,故本選項符合題意;C、∵Δ=b2-4ac=12-4×1×3=-11<0,∴此方程沒有實數(shù)根,故本選項符合題意;D、∵Δ=b2-4ac=22-4×1×(-1)=8>0,∴此方程有兩個不相等的實數(shù)根,故本選項不符合題意;故選:ABC.【考點】本題考查了一元二次方程根的判別式的知識.此題比較簡單,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根與Δ=b2-4ac有如下關系:①當Δ>0時,方程有兩個不相等的兩個實數(shù)根;②當Δ=0時,方程有兩個相等的兩個實數(shù)根;③當Δ<0時,方程無實數(shù)根.4、AC【解析】【分析】根據(jù)三角形內切圓的性質逐個判斷可得出答案.【詳解】A、以點B為圓心,以適當長為半徑作弧分別交于G,H兩點;分別以點G,H為圓心,以大于的長為半徑作弧,兩條弧交于點P;作射線,由此可得BP是角平分線,所以射線一定過點O,說法正確,選項符合題意;B、邊DE、EF、DF分別是圓的弦長,所以點O是△DEF三條邊的垂直平分線的交點,選項不符合題意;C、當是等邊三角形時,可以證得D、F、E分別是邊的中點,根據(jù)中位線概念可得,選項符合題意;D、邊DE、EF、DF分別是圓的弦長,所以點O是△DEF三條邊的垂直平分線的交點,選項不符合題意;故選:AC.【考點】本題考查了三角形內切圓的特點和性質,解題的關鍵是能與其它知識聯(lián)系起來,加以證明選項的正確.5、BD【解析】【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸x=?1可得2a+b的符號;再由根的判別式可得,根據(jù)二次函數(shù)的對稱性進而對所得結論進行判斷.【詳解】解:A、由拋物線的開口向下知a<0,與y軸的交點在y軸的正半軸上,知c>0,∵對稱軸為直線,得2a=b,∴a、b同號,即b<0,∴abc>0;故本選項正確,不符合題意;B、∵對稱軸為,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本選項錯誤,符合題意;C、從圖象知,該函數(shù)與x軸有兩個不同的交點,所以根的判別式,即;故本選項正確,不符合題意;D、∵?3<x1<?2,∴根據(jù)二次函數(shù)圖象的對稱性,知當x=1時,y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本選項錯誤,符合題意.故選:BD.【考點】本題主要考查了二次函數(shù)圖象與系數(shù)之間的關系,熟練運用對稱軸的范圍求2a與b的關系,二次函數(shù)與方程及不等式之間的關系是解決本題的關鍵.三、填空題1、【分析】根據(jù)已知條件可得出,,再利用圓周角定理得出即可.【詳解】解:、分別與相切于、兩點,,,,,.故答案為:.【點睛】本題考查的知識點是切線的性質以及圓周角定理,掌握以上知識點是解此題的關鍵.2、2019【解析】【分析】先將點(m,0)代入函數(shù)解析式,然后求代數(shù)式的值即可得出結果.【詳解】解:將(m,0)代入函數(shù)解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.故答案為:2019.【考點】本題考查了二次函數(shù)圖象上點的坐標特征及求代數(shù)式的值,解題的關鍵是將點(m,0)代入函數(shù)解析式得到有關m的代數(shù)式的值.3、【解析】【分析】由旋轉的性質可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【詳解】解:∵把△ADE順時針旋轉90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴點F,點B,點C共線,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根據(jù)勾股定理得:EF=,故答案為:.【考點】本題考查了旋轉的性質,正方形的性質,勾股定理,靈活運用這些性質解決問題是本題的關鍵.4、2【解析】【分析】根據(jù)中心對稱的性質AD=DE及∠D=90゜,由勾股定理即可求得AE的長.【詳解】∵△DEC與△ABC關于點C成中心對稱,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE=,故答案為.【考點】本題考查了中心對稱的性質,勾股定理等知識,關鍵中心對稱性質的應用.5、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圓周角定理即可解決問題.【詳解】解:如圖作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案為:60.【點睛】本題考查三角形的外心與外接圓、圓周角定理.垂徑定理、勾股定理、直角三角形30度角性質、等腰三角形的性質等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題.四、簡答題1、(1);(2);(3)面積最大為,點坐標為;(4)存在點,使以點、、、為頂點的四邊形是平行四邊形,,點坐標為,,.【解析】【分析】(1)將點,代入即可求解;(2)BC與對稱軸的交點即為符合條件的點,據(jù)此可解;(3)過點作軸于點,交直線與點,當EF最大時面積的取得最大值,據(jù)此可解;(4)根據(jù)平行四邊形對邊平行且相等的性質可以得到存在點N使得以B,C,M,N為頂點的四邊形是平行四邊形.分三種情況討論.【詳解】解:(1)拋物線過點,解得:拋物線解析式為.(2)點,∴拋物線對稱軸為直線點在直線上,點,關于直線對稱,當點、、在同一直線上時,最?。畳佄锞€解析式為,∴C(0,-6),設直線解析式為,解得:直線:,,故答案為:.(3)過點作軸于點,交直線與點,設,則,當時,面積最大為,此時點坐標為.(4)存在點,使以點、、、為頂點的四邊形是平行四邊形.設N(x,y),M(,m),①四邊形CMNB是平行四邊形時,CM∥NB,CB∥MN,,∴x=,∴y==,∴N(,);②四邊形CNBM是平行四邊形時,CN∥BM,CM∥BN,,∴x=,∴y==∴N(,);③四邊形CNMB是平行四邊形時,CB∥MN,NC∥BM,,∴x=,∴y==∴N(,);點坐標為(,),(,),(,).【考點】本題考查二次函數(shù)與幾何圖形的綜合題,熟練掌握二次函數(shù)的性質,靈活運用數(shù)形結合思想得到坐標之間的關系是解題的關鍵.2、4m【解析】【分析】首先根據(jù)DO=OE=1m,可得∠DEB=45°,然后證明AB=BE,再證明△ABF∽△COF,可得,然后代入數(shù)值可得方程,解出方程即可得到答案.【詳解】解:延長OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,設AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴,,解得:x=4.經(jīng)檢驗:x=4是原方程的解.答:圍墻AB的高度是4m.【考點】此題主要考查了相似三角形的應用,解決問題的關鍵是求出AB=BE,根據(jù)相似三角形的判定方法證明△ABF∽△COF.五、解答題1、(1)y=4x2﹣7x+1;(2)y=﹣2(x﹣2)2+3.【解析】【分析】(1)先設出拋物線的解析式為y=ax2+bx+c,再將點(0,1),(1,?2),(2,3)代入解析式中,即可求得拋物線的解析式;(2)由于已知拋物線的頂點坐標,則可設頂點式y(tǒng)=a(x?2)2+3,然后把(3,1)代入求出a的值即可.【詳解】解:(1)設出拋物線的解析式為y=ax2+bx+c,將(0,1),(1,﹣2),(2,3)代入解析式,得:,解得:,∴拋物線解析式為:y=4x2﹣7x+1;(2)設拋物線解析式為y=a(x﹣2)2+3,把(3,1)代入得:a(3﹣2)2+3=1,解得a=﹣2,所以拋物線解析式為y=﹣2(x﹣2)2+3.【考點】本題考查了待定系數(shù)法求二次函數(shù)的解析式:一般地,當已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當已知拋物線的頂點或對稱軸時,常設其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設其解析式為交點式來求解.2、(1)x1=,x2=(2)x1=4+,x2=4-【解析】【分析】(1)根據(jù)公式法,可得方程的解;(2)根據(jù)配方法,可得方程的解.(1)解:∵a=2,b=-5,c=1,∴Δ=b2﹣4ac=(-5)2-4×2×1=17,∴x=,∴x1=,x2=.(2)解:移項得,并配方,得,即(x-4)2=15,兩邊開平方,得x=4±,∴x1=4+,x2=4-.【考點】本題考查了解一元二次方程,配方法解一元二次方程的關鍵是配方,利用公式法解方程要利用根的判別式.3、(1)(2)①見解析;②【分析】(1)直接由概率公式求解即可;(2)①列表,共有12種等可能的結果,②抽取的這兩張牌的牌面數(shù)字之和是偶數(shù)的結果有4種,再由概率公式求解即可.(1)∵共有四張牌,它們的牌面數(shù)字分別為3,4,6,9,其中抽取的這張牌的牌面數(shù)字能被3整除的有3種,∴從中隨機抽取一張,則抽取的這張牌的牌面數(shù)字能被3整除的概率是故答案為:(2)①根據(jù)題意,列表如下:第一次第二次34693—(4,3)(6,3)(9,3)4(3,4)—(6,4)(9,4)6(3,6)(4,6)—(9,6)9(3,9)(4,9)(6,9)—所有可能產(chǎn)生的全部結果共有種.②∵抽取的這兩張牌的牌面數(shù)字之和是偶數(shù)的結果有4種∴抽取的這兩張牌的牌面數(shù)字之和是偶數(shù)的概率.【點睛】此題考查的是畫樹狀圖或列表法求概率.樹狀圖或列表法可以不重復不遺漏的列出所有可能的結果,適合兩步或兩步以上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論