版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
一、解答題1.在如圖所示的平面直角坐標(biāo)系中,A(1,3),B(3,1),將線段A平移至CD,C(m,-1),D(1,n)(1)m=_____,n=______(2)點(diǎn)P的坐標(biāo)是(c,0)①設(shè)∠ABP=,請(qǐng)寫出∠BPD和∠PDC之間的數(shù)量關(guān)系(用含的式子表示,若有多種數(shù)量關(guān)系,選擇一種加以說明)②當(dāng)三角形PAB的面積不小于3且不大于10,求點(diǎn)p的橫坐標(biāo)C的取值范圍(直接寫出答案即可)2.已知,點(diǎn)在與之間.(1)圖1中,試說明:;(2)圖2中,的平分線與的平分線相交于點(diǎn),請(qǐng)利用(1)的結(jié)論說明:.(3)圖3中,的平分線與的平分線相交于點(diǎn),請(qǐng)直接寫出與之間的數(shù)量關(guān)系.3.如圖,,點(diǎn)A、B分別在直線MN、GH上,點(diǎn)O在直線MN、GH之間,若,.(1)=;(2)如圖2,點(diǎn)C、D是、角平分線上的兩點(diǎn),且,求的度數(shù);(3)如圖3,點(diǎn)F是平面上的一點(diǎn),連結(jié)FA、FB,E是射線FA上的一點(diǎn),若,,且,求n的值.4.已知,AB∥CD.點(diǎn)M在AB上,點(diǎn)N在CD上.(1)如圖1中,∠BME、∠E、∠END的數(shù)量關(guān)系為:;(不需要證明)如圖2中,∠BMF、∠F、∠FND的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度數(shù);(3)如圖4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,則∠FEQ的大小是否發(fā)生變化,若變化,請(qǐng)說明理由,若不變化,求出∠FEQ的度數(shù).5.如圖,直線,點(diǎn)是、之間(不在直線,上)的一個(gè)動(dòng)點(diǎn).(1)如圖1,若與都是銳角,請(qǐng)寫出與,之間的數(shù)量關(guān)系并說明理由;(2)把直角三角形如圖2擺放,直角頂點(diǎn)在兩條平行線之間,與交于點(diǎn),與交于點(diǎn),與交于點(diǎn),點(diǎn)在線段上,連接,有,求的值;(3)如圖3,若點(diǎn)是下方一點(diǎn),平分,平分,已知,求的度數(shù).6.如圖①,將一張長方形紙片沿對(duì)折,使落在的位置;(1)若的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);(2)如圖②,再將紙片沿對(duì)折,使得落在的位置.①若,的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);②若,的度數(shù)比的度數(shù)大,試計(jì)算的度數(shù).7.觀察下列各式,并用所得出的規(guī)律解決問題:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點(diǎn)每向右移動(dòng)______位,其算術(shù)平方根的小數(shù)點(diǎn)向______移動(dòng)______位.(2)已知,,則_____;______.(3),,,……小數(shù)點(diǎn)的變化規(guī)律是_______________________.(4)已知,,則______.8.先閱讀材料,再解答問題:我國數(shù)學(xué)家華羅庚在一次出國訪問途中,看到飛機(jī)上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根,華羅庚脫口而出,給出了答案,眾人十分驚訝,忙問計(jì)算的奧妙,你知道華羅庚怎樣迅速而準(zhǔn)確地計(jì)算出結(jié)果嗎?請(qǐng)你按下面的步驟也試一試:(1)我們知道,,那么,請(qǐng)你猜想:59319的立方根是_______位數(shù)(2)在自然數(shù)1到9這九個(gè)數(shù)字中,________,________,________.猜想:59319的個(gè)位數(shù)字是9,則59319的立方根的個(gè)位數(shù)字是________.(3)如果劃去59319后面的三位“319”得到數(shù)59,而,,由此可確定59319的立方根的十位數(shù)字是________,因此59319的立方根是________.(4)現(xiàn)在換一個(gè)數(shù)103823,你能按這種方法得出它的立方根嗎?9.如果有一列數(shù),從這列數(shù)的第2個(gè)數(shù)開始,每一個(gè)數(shù)與它的前一個(gè)數(shù)的比等于同一個(gè)非零的常數(shù),這樣的一列數(shù)就叫做等比數(shù)列(GeometricSequences).這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示(q≠0).(1)觀察一個(gè)等比列數(shù)1,,…,它的公比q=;如果an(n為正整數(shù))表示這個(gè)等比數(shù)列的第n項(xiàng),那么a18=,an=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步驟進(jìn)行:令S=1+2+4+8+16+…+230…①等式兩邊同時(shí)乘以2,得2S=2+4+8+16++32+…+231…②由②﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以請(qǐng)根據(jù)以上的解答過程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若數(shù)列a1,a2,a3,…,an,從第二項(xiàng)開始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為q,請(qǐng)用含a1,q,n的代數(shù)式表示an;如果這個(gè)常數(shù)q≠1,請(qǐng)用含a1,q,n的代數(shù)式表示a1+a2+a3+…+an.10.對(duì)于有理數(shù)、,定義了一種新運(yùn)算“※”為:如:,.(1)計(jì)算:①______;②______;(2)若是關(guān)于的一元一次方程,且方程的解為,求的值;(3)若,,且,求的值.11.定義:對(duì)任意一個(gè)兩位數(shù),如果滿足個(gè)位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個(gè)兩位數(shù)為“奇異數(shù)”.將一個(gè)“奇異數(shù)”的個(gè)位數(shù)字與十位數(shù)字對(duì)調(diào)后得到一個(gè)新的兩位數(shù),把這個(gè)新兩位數(shù)與原兩位數(shù)的和與的商記為例如:,對(duì)調(diào)個(gè)位數(shù)字與十位數(shù)字后得到新兩位數(shù)是,新兩位數(shù)與原兩位數(shù)的和為,和與的商為,所以根據(jù)以上定義,完成下列問題:(1)填空:①下列兩位數(shù):,,中,“奇異數(shù)”有.②計(jì)算:..(2)如果一個(gè)“奇異數(shù)”的十位數(shù)字是,個(gè)位數(shù)字是,且請(qǐng)求出這個(gè)“奇異數(shù)”(3)如果一個(gè)“奇異數(shù)”的十位數(shù)字是,個(gè)位數(shù)字是,且滿足,請(qǐng)直接寫出滿足條件的的值.12.探究與應(yīng)用:觀察下列各式:1+3=21+3+5=21+3+5+7=21+3+5+7+9=2……問題:(1)在橫線上填上適當(dāng)?shù)臄?shù);(2)寫出一個(gè)能反映此計(jì)算一般規(guī)律的式子;(3)根據(jù)規(guī)律計(jì)算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(結(jié)果用科學(xué)記數(shù)法表示)13.如圖,在平面直角坐標(biāo)系中,已知△ABC,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)B的坐標(biāo)是(2,3),點(diǎn)C在x軸的負(fù)半軸上,且AC=6.(1)直接寫出點(diǎn)C的坐標(biāo).(2)在y軸上是否存在點(diǎn)P,使得S△POB=S△ABC若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.(3)把點(diǎn)C往上平移3個(gè)單位得到點(diǎn)H,作射線CH,連接BH,點(diǎn)M在射線CH上運(yùn)動(dòng)(不與點(diǎn)C、H重合).試探究∠HBM,∠BMA,∠MAC之間的數(shù)量關(guān)系,并證明你的結(jié)論.14.綜合與實(shí)踐課上,同學(xué)們以“一個(gè)直角三角形和兩條平行線”為背景開展數(shù)學(xué)活動(dòng),如圖,已知兩直線,且是直角三角形,,操作發(fā)現(xiàn):(1)如圖1.若,求的度數(shù);(2)如圖2,若的度數(shù)不確定,同學(xué)們把直線向上平移,并把的位置改變,發(fā)現(xiàn),請(qǐng)說明理由.(3)如圖3,若∠A=30°,平分,此時(shí)發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請(qǐng)寫出與的數(shù)量關(guān)系并說明理由.15.問題情境:在平面直角坐標(biāo)系xOy中有不重合的兩點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2),小明在學(xué)習(xí)中發(fā)現(xiàn),若x1=x2,則AB∥y軸,且線段AB的長度為|y1﹣y2|;若y1=y(tǒng)2,則AB∥x軸,且線段AB的長度為|x1﹣x2|;(應(yīng)用):(1)若點(diǎn)A(﹣1,1)、B(2,1),則AB∥x軸,AB的長度為.(2)若點(diǎn)C(1,0),且CD∥y軸,且CD=2,則點(diǎn)D的坐標(biāo)為.(拓展):我們規(guī)定:平面直角坐標(biāo)系中任意不重合的兩點(diǎn)M(x1,y1),N(x2,y2)之間的折線距離為d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:圖1中,點(diǎn)M(﹣1,1)與點(diǎn)N(1,﹣2)之間的折線距離為d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解決下列問題:(1)如圖1,已知E(2,0),若F(﹣1,﹣2),則d(E,F(xiàn));(2)如圖2,已知E(2,0),H(1,t),若d(E,H)=3,則t=.(3)如圖3,已知P(3,3),點(diǎn)Q在x軸上,且三角形OPQ的面積為3,則d(P,Q)=.16.某超市分別以每盞150元,190元的進(jìn)價(jià)購進(jìn)A,B兩種品牌的護(hù)眼燈,下表是近兩天的銷售情況.銷售日期銷售數(shù)量(盞)銷售收入(元)A品牌B品牌第一天21680第二天341670(1)求A,B兩種品牌護(hù)眼燈的銷售價(jià);(2)若超市準(zhǔn)備用不超過4900元的金額購進(jìn)這兩種品牌的護(hù)眼燈共30盞,求B品牌的護(hù)眼燈最多采購多少盞?17.如圖,在平面直角坐標(biāo)系xOy中,對(duì)于任意兩點(diǎn)A(x1,y1)與B(x2,y2)的“非常距離”,給出如下定義:若|x1﹣x2|≥|y1﹣y2|,則點(diǎn)A與點(diǎn)B的“非常距離”為|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,則點(diǎn)A與點(diǎn)B的“非常距離”為|y1﹣y2|.(1)填空:已知點(diǎn)A(3,6)與點(diǎn)B(5,2),則點(diǎn)A與點(diǎn)B的“非常距離”為;(2)已知點(diǎn)C(﹣1,2),點(diǎn)D為y軸上的一個(gè)動(dòng)點(diǎn).①若點(diǎn)C與點(diǎn)D的“非常距離”為2,求點(diǎn)D的坐標(biāo);②直接寫出點(diǎn)C與點(diǎn)D的“非常距離”的最小值.18.在平面直角坐標(biāo)系中,點(diǎn),的坐標(biāo)分別為,,現(xiàn)將線段先向上平移3個(gè)單位,再向右平移1個(gè)單位,得到線段,連接,.(1)如圖1,求點(diǎn),的坐標(biāo)及四邊形的面積;圖1(2)如圖1,在軸上是否存在點(diǎn),連接,,使?若存在這樣的點(diǎn),求出點(diǎn)的坐標(biāo);若不存在,試說明理由;(3)如圖2,在直線上是否存在點(diǎn),連接,使?若存在這樣的點(diǎn),直接寫出點(diǎn)的坐標(biāo);若不存在,試說明理由.圖2(4)在坐標(biāo)平面內(nèi)是否存在點(diǎn),使?若存在這樣的點(diǎn),直接寫出點(diǎn)的坐標(biāo)的規(guī)律;若不存在,請(qǐng)說明理由.19.如圖,學(xué)校印刷廠與A,D兩地有公路、鐵路相連,從A地購進(jìn)一批每噸8000元的白紙,制成每噸10000元的作業(yè)本運(yùn)到D地批發(fā),已知公路運(yùn)價(jià)1.5元/(t?km),鐵路運(yùn)價(jià)1.2元/(t?km).這兩次運(yùn)輸支出公路運(yùn)費(fèi)4200元,鐵路運(yùn)費(fèi)26280元.(1)白紙和作業(yè)本各多少噸?(2)這批作業(yè)本的銷售款比白紙的購進(jìn)款與運(yùn)輸費(fèi)的和多多少元?20.歷史上的數(shù)學(xué)巨人歐拉最先把關(guān)于x的多項(xiàng)式用記號(hào)f(x)來表示.例如f(x)=x2+3x-5,把x=某數(shù)時(shí)多項(xiàng)式的值用f(某數(shù))來表示.例如x=-1時(shí)多項(xiàng)式x2+3x-5的值記為f(-1)=(-1)2+3×(-1)-5=-7.(1)已知g(x)=-2x2-3x+1,分別求出g(-1)和g(-2);(2)已知h(x)=ax3+2x2-ax-6,當(dāng)h()=a,求a的值;(3)已知f(x)=--2(a,b為常數(shù)),當(dāng)k無論為何值,總有f(1)=0,求a,b的值.21.某公園的門票價(jià)格如下表所示:某中學(xué)七年級(jí)(1)、(2)兩個(gè)班計(jì)劃去游覽該公園,其中(I)班的人數(shù)較少,不足50人;(2)班人數(shù)略多,有50多人.如果兩個(gè)班都以班為單位分別購票,則一共應(yīng)付1172元,如果兩個(gè)班聯(lián)合起來,作為一個(gè)團(tuán)體購票,則需付1078元.(1)列方程求出兩個(gè)班各有多少學(xué)生;(2)如果兩個(gè)班聯(lián)合起來買票,是否可以買單價(jià)為9元的票?你有什么省錢的方法來幫他們買票呢?請(qǐng)給出最省錢的方案.22.如圖,,是的平分線,和的度數(shù)滿足方程組,(1)求和的度數(shù);(2)求證:.(3)求的度數(shù).23.如圖①,在平面直角坐標(biāo)系中,點(diǎn)A在x軸上,直線OC上所有的點(diǎn)坐標(biāo),都是二元一次方程的解,直線AC上所有的點(diǎn)坐標(biāo),都是二元一次方程的解,過C作x軸的平行線,交y軸與點(diǎn)B.(1)求點(diǎn)A、B、C的坐標(biāo);(2)如圖②,點(diǎn)M、N分別為線段BC,OA上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M從點(diǎn)C以每秒1個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí)點(diǎn)N從點(diǎn)O以每秒1.5個(gè)單位長度的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,且0<t<4,試比較四邊形MNAC的面積與四邊形MNOB的面積的大?。?4.已知,在平面直角坐標(biāo)系中,三角形三個(gè)頂點(diǎn)的坐標(biāo)分別為,,,軸,且、滿足.(1)則______;______;______;(2)如圖1,在軸上是否存在點(diǎn),使三角形的面積等于三角形的面積?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;(3)如圖2,連接交于點(diǎn),點(diǎn)在軸上,若三角形的面積小于三角形的面積,直接寫出的取值范圍是______.25.閱讀材料:形如的不等式,我們就稱之為雙連不等式.求解雙連不等式的方法一,轉(zhuǎn)化為不等式組求解,如;方法二,利用不等式的性質(zhì)直接求解,雙連不等式的左、中、右同時(shí)減去1,得,然后同時(shí)除以2,得.解決下列問題:(1)請(qǐng)你寫一個(gè)雙連不等式并將它轉(zhuǎn)化為不等式組;(2)利用不等式的性質(zhì)解雙連不等式;(3)已知,求的整數(shù)值.26.某市出租車的起步價(jià)是7元(起步價(jià)是指不超過行程的出租車價(jià)格),超過3km行程后,其中除的行程按起步價(jià)計(jì)費(fèi)外,超過部分按每千米1.6元計(jì)費(fèi)(不足按計(jì)算).如果僅去程乘出租車而回程時(shí)不乘坐此車,并且去程超過,那么顧客還需付回程的空駛費(fèi),超過部分按每千米0.8元計(jì)算空駛費(fèi)(即超過部分實(shí)際按每千米2.4元計(jì)費(fèi)).如果往返都乘同一出租車并且中間等候時(shí)間不超過3分鐘,則不收取空駛費(fèi)而加收1.6元等候費(fèi).現(xiàn)設(shè)小文等4人從市中心A處到相距()的B處辦事,在B處停留的時(shí)間在3分鐘以內(nèi),然后返回A處.現(xiàn)在有兩種往返方案:方案一:去時(shí)4人同乘一輛出租車,返回都乘公交車(公交車票為每人2元);方案二:4人乘同一輛出租車往返.問選擇哪種計(jì)費(fèi)方式更省錢?(寫出過程)27.某加工廠用52500元購進(jìn)A、B兩種原料共40噸,其中原料A每噸1500元,原料B每噸1000元.由于原料容易變質(zhì),該加工廠需盡快將這批原料運(yùn)往有保質(zhì)條件的倉庫儲(chǔ)存.經(jīng)市場(chǎng)調(diào)查獲得以下信息:①將原料運(yùn)往倉庫有公路運(yùn)輸與鐵路運(yùn)輸兩種方式可供選擇,其中公路全程120千米,鐵路全程150千米;②兩種運(yùn)輸方式的運(yùn)輸單價(jià)不同(單價(jià):每噸每千米所收的運(yùn)輸費(fèi));③公路運(yùn)輸時(shí),每噸每千米還需加收1元的燃油附加費(fèi);④運(yùn)輸還需支付原料裝卸費(fèi):公路運(yùn)輸時(shí),每噸裝卸費(fèi)100元;鐵路運(yùn)輸時(shí),每噸裝卸費(fèi)220元.(1)加工廠購進(jìn)A、B兩種原料各多少噸?(2)由于每種運(yùn)輸方式的運(yùn)輸能力有限,都無法單獨(dú)承擔(dān)這批原料的運(yùn)輸任務(wù).加工廠為了盡快將這批原料運(yùn)往倉庫,決定將A原料選一種方式運(yùn)輸,B原料用另一種方式運(yùn)輸,哪種方案運(yùn)輸總花費(fèi)較少?請(qǐng)說明理由.28.如圖,數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別是-1,1,點(diǎn)P是線段AB上一動(dòng)點(diǎn),給出如下定義:如果在數(shù)軸上存在動(dòng)點(diǎn)Q,滿足|PQ|=2,那么我們把這樣的點(diǎn)Q表示的數(shù)稱為連動(dòng)數(shù),特別地,當(dāng)點(diǎn)Q表示的數(shù)是整數(shù)時(shí)我們稱為連動(dòng)整數(shù).(1)在-2.5,0,2,3.5四個(gè)數(shù)中,連動(dòng)數(shù)有;(直接寫出結(jié)果)(2)若k使得方程組中的x,y均為連動(dòng)數(shù),求k所有可能的取值;(3)若關(guān)于x的不等式組的解集中恰好有4個(gè)連動(dòng)整數(shù),求這4個(gè)連動(dòng)整數(shù)的值及a的取值范圍.29.中國傳統(tǒng)節(jié)日“端午節(jié)”期間,某商場(chǎng)開展了“歡度端午,回饋顧客”的讓利促銷活動(dòng),對(duì)部分品牌的粽子進(jìn)行了打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買5盒甲品牌粽子和4盒乙品牌粽子需520元.(1)打折前,每盒甲、乙品牌粽子分別為多少元?(2)在商場(chǎng)讓利促銷活動(dòng)期間,某敬老院準(zhǔn)備購買甲、乙兩種品牌粽子共40盒,總費(fèi)用不超過2300元,問敬老院最多可購買多少盒乙品牌粽子?30.如圖,在平面直角坐標(biāo)系中,四邊形各頂點(diǎn)的坐標(biāo)分別為,,,,現(xiàn)將四邊形經(jīng)過平移后得到四邊形,點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為.(1)請(qǐng)直接寫點(diǎn)、、的坐標(biāo);(2)求四邊形與四邊形重疊部分的面積;(3)在軸上是否存在一點(diǎn),連接、,使,若存在這樣一點(diǎn),求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、解答題1.(1)-1,-3.(2)①當(dāng)點(diǎn)P在直線AB,CD之間時(shí),∠BPD-∠PDC=α.當(dāng)點(diǎn)P在直線CD的下方時(shí),∠BPD+∠PDC=α.當(dāng)點(diǎn)P在直線AB的上方時(shí),∠BPD+∠PDC=α;②-6<m≤1或7≤m<14【分析】(1)由題意,線段AB向左平移2個(gè)單位,向下平移4個(gè)單位得到線段CD,利用平移規(guī)律求解即可.(2)①分三種情形求解,如圖1中,當(dāng)點(diǎn)P在直線AB,CD之間時(shí),∠BPD-∠PDC=α.如圖2中,當(dāng)點(diǎn)P在直線CD的下方時(shí),∠BPD+∠PDC=α.如圖3中,當(dāng)點(diǎn)P在直線AB的上方時(shí),同法可證∠BPD+∠PDC=α.分別利用平行線的性質(zhì)求解即可.②求出點(diǎn)P在直線AB兩側(cè),△PAB的面積分別為3和10時(shí),m的值,即可判斷.【詳解】解:(1)由題意,線段AB向左平移2個(gè)單位,向下平移4個(gè)單位得到線段CD,∵A(1,3),B(3,1),∴C(-1,-1),D(1,-3),∴m=-1,n=-3.故答案為:-1,-3.(2)如圖1中,當(dāng)點(diǎn)P在直線AB,CD之間時(shí),∠BPD-∠PDC=α.理由:過點(diǎn)P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD-∠PDC=∠BPD-∠DPE=∠BPE=α.如圖2中,當(dāng)點(diǎn)P在直線CD的下方時(shí),∠BPD+∠PDC=α.理由:過點(diǎn)P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD+∠PDC=∠BPD+∠DPE=∠BPE=α.如圖3中,當(dāng)點(diǎn)P在直線AB的上方時(shí),同法可證∠BPD+∠PDC=α.(3)如圖4中,過點(diǎn)B作BH⊥x軸于H,過點(diǎn)A作AT⊥BH交BH于點(diǎn)T,延長AB交x軸于E.當(dāng)點(diǎn)P在直線AB的下方時(shí),S△PAB=S梯形ATHP-S△ABT-S△PBH=(2+3-m)?3-×2×2-?(3-m)?1=-m+4,當(dāng)△PAB的面積=3時(shí),-m+4=3,解得m=1,當(dāng)△PAB的面積=3時(shí),-m+4=10,解得m=-6,∵△ABT是等腰直角三角形,∴∠ABT=45°=∠HBE,∴BH=EH=1,∴E(4,0),根據(jù)對(duì)稱性可知,當(dāng)點(diǎn)P在直線AB的右側(cè)時(shí),當(dāng)△PAB的面積=3時(shí),m=7,當(dāng)△PAB的面積=3時(shí),m=14,觀察圖象可知,-6<m≤1或7≤m<14.【點(diǎn)睛】本題屬于三角形綜合題,考查了三角形的面積,平行線的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用分割法求三角形面積,學(xué)會(huì)尋找特殊位置解決問題,屬于中考??碱}型.2.(1)說明過程請(qǐng)看解答;(2)說明過程請(qǐng)看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點(diǎn)E作EG∥AB,則∠BEG=∠ABE,根據(jù)AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,進(jìn)而可得∠BED=∠ABE+∠CDE;(2)圖2中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,結(jié)合(1)的結(jié)論即可說明:∠BED=2∠BFD;(3)圖3中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,過點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合(1)的結(jié)論即可說明∠BED與∠BFD之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,過點(diǎn)E作EG∥AB,則∠BEG=∠ABE,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)圖2中,因?yàn)锽F平分∠ABE,所以∠ABE=2∠ABF,因?yàn)镈F平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因?yàn)锳B∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.圖3中,過點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因?yàn)锽F平分∠ABE,所以∠ABE=2∠ABF,因?yàn)镈F平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因?yàn)锳B∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【點(diǎn)睛】本題考查了平行線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的性質(zhì).3.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點(diǎn)E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質(zhì)得到;進(jìn)一步求得,,然后根據(jù)三角形外角的性質(zhì)解答即可;(3)設(shè)BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵M(jìn)N//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長AC、CD交GH于點(diǎn)E、F,∵AC平分且,∴,又∵M(jìn)N//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設(shè)FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經(jīng)檢驗(yàn):是原方程的根,且符合題意.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及應(yīng)用,正確作出輔助線、構(gòu)造平行線、再利用平行線性質(zhì)進(jìn)行求解是解答本題的關(guān)鍵.4.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;過F作FH∥AB,易得FH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過E作EH∥AB,如圖1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如圖2,過F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作平行線的輔助線是解題的關(guān)鍵.5.(1)見解析;(2);(3)75°【分析】(1)根據(jù)平行線的性質(zhì)、余角和補(bǔ)角的性質(zhì)即可求解.(2)根據(jù)平行線的性質(zhì)、對(duì)頂角的性質(zhì)和平角的定義解答即可.(3)根據(jù)平行線的性質(zhì)和角平分線的定義以及三角形內(nèi)角和解答即可.【詳解】解:(1)∠C=∠1+∠2,證明:過C作l∥MN,如下圖所示,∵l∥MN,∴∠4=∠2(兩直線平行,內(nèi)錯(cuò)角相等),∵l∥MN,PQ∥MN,∴l(xiāng)∥PQ,∴∠3=∠1(兩直線平行,內(nèi)錯(cuò)角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴,(3)設(shè)BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【點(diǎn)睛】本題考查了平行線的性質(zhì)、余角和補(bǔ)角的性質(zhì),解題的關(guān)鍵是根據(jù)平行找出角度之間的關(guān)系.6.(1);(2)①;②【分析】(1)由平行線的性質(zhì)得到,由折疊的性質(zhì)可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質(zhì)得到,再由折疊的性質(zhì)及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據(jù)條件和折疊的性質(zhì)得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數(shù)比的度數(shù)大,,,,.【點(diǎn)睛】此題考查了平行線的性質(zhì),屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內(nèi)錯(cuò)角相等”及折疊的性質(zhì)是解題的關(guān)鍵.7.(1)兩;右;一;(2)12.25;0.3873;(3)被開方數(shù)的小數(shù)點(diǎn)向右(左)移三位,其立方根的小數(shù)點(diǎn)向右(左)移動(dòng)一位;(4)-0.01【分析】(1)觀察已知等式,得到一般性規(guī)律,寫出即可;(2)利用得出的規(guī)律計(jì)算即可得到結(jié)果;(3)歸納總結(jié)得到規(guī)律,寫出即可;(4)利用得出的規(guī)律計(jì)算即可得到結(jié)果.【詳解】解:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點(diǎn)每向右移動(dòng)兩位,其算術(shù)平方根的小數(shù)點(diǎn)向右移動(dòng)一位.故答案為:兩;右;一;(2)已知,,則;;故答案為:12.25;0.3873;(3),,,……小數(shù)點(diǎn)的變化規(guī)律是:被開方數(shù)的小數(shù)點(diǎn)向右(左)移三位,其立方根的小數(shù)點(diǎn)向右(左)移動(dòng)一位;(4)∵,,∴,∴,∴y=-0.01.【點(diǎn)睛】此題考查了立方根,以及算術(shù)平方根,弄清題中的規(guī)律是解本題的關(guān)鍵.8.(1)兩;(2)125,343,729,9;(3)3,39;(4)47【分析】(1)根據(jù)夾逼法和立方根的定義進(jìn)行解答;(2)先分別求得1至9中奇數(shù)的立方,然后根據(jù)末位數(shù)字是幾進(jìn)行判斷即可;(3)先利用(2)中的方法判斷出個(gè)數(shù)數(shù)字,然后再利用夾逼法判斷出十位數(shù)字即可;(4)利用(3)中的方法確定出個(gè)位數(shù)字和十位數(shù)字即可.【詳解】(1)∵1000<59319<1000000,∴59319的立方根是兩位數(shù);(2)∵125,343,729,∴59319的個(gè)位數(shù)字是9,則59319的立方根的個(gè)位數(shù)字是9;(3)∵,且59319的立方根是兩位數(shù),∴59319的立方根的十位數(shù)字是3,又∵59319的立方根的個(gè)位數(shù)字是9,∴59319的立方根是39;(4)∵1000<103823<1000000,∴103823的立方根是兩位數(shù);∵125,343,729,∴103823的個(gè)位數(shù)字是3,則103823的立方根的個(gè)位數(shù)字是7;∵,且103823的立方根是兩位數(shù),∴103823的立方根的十位數(shù)字是4,又∵103823的立方根的個(gè)位數(shù)字是7,∴103823的立方根是47.【點(diǎn)睛】考查了立方根的概念和求法,解題關(guān)鍵是理解一個(gè)數(shù)的立方的個(gè)位數(shù)就是這個(gè)數(shù)的個(gè)位數(shù)的立方的個(gè)位數(shù).9.(1),,;(2);(3)【分析】(1)÷1即可求出q,根據(jù)已知數(shù)的特點(diǎn)求出a18和an即可;(2)根據(jù)已知先求出3S,再相減,即可得出答案;(3)根據(jù)(1)(2)的結(jié)果得出規(guī)律即可.【詳解】解:(1)÷1=,a18=1×()17=,an=1×()n﹣1=,故答案為:,,;(2)設(shè)S=3+32+33+…+323,則3S=32+33+…+323+324,∴2S=324﹣3,∴S=(3)an=a1?qn﹣1,a1+a2+a3+…+an=.【點(diǎn)睛】本題考查了整式的混合運(yùn)算的應(yīng)用,主要考查學(xué)生的理解能力和閱讀能力,題目是一道比較好的題目,有一定的難度.10.(1)①5;②;(2)1;(3)16.【分析】(1)根據(jù)題中定義代入即可得出;(2)根據(jù),討論3和的兩種大小關(guān)系,進(jìn)行計(jì)算;(3)先判定A、B的大小關(guān)系,再進(jìn)行求解.【詳解】(1)根據(jù)題意:∵,∴,∵,∴.(2)∵,∴,①若,則,解得,②若,則,解得(不符合題意),∴.(3)∵,∴,∴,得,∴.【點(diǎn)睛】本題考查了一種新運(yùn)算,讀懂題意掌握新運(yùn)算并能正確化簡是解題的關(guān)鍵.11.(1)①,②,;(2);(3)【分析】(1)①由“奇異數(shù)”的定義可得;②根據(jù)定義計(jì)算可得;(2)由f(10m+n)=m+n,可求k的值,即可求b;(3)根據(jù)題意可列出等式,可求出x、y的值,即可求的值.【詳解】解:(1)①∵對(duì)任意一個(gè)兩位數(shù)a,如果a滿足個(gè)位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個(gè)兩位數(shù)為“奇異數(shù)”.∴“奇異數(shù)”為21;②f(15)=(15+51)÷11=6,f(10m+n)=(10m+n+10n+m)÷11=m+n;(2)∵f(10m+n)=m+n,且f(b)=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根據(jù)題意有∵∴∴∵x、y為正數(shù),且x≠y∴x=6,y=5∴a=6×10+5=65故答案為:(1)①,②,;(2);(3)【點(diǎn)睛】本題考查了新定義下的實(shí)數(shù)運(yùn)算,能理解“奇異數(shù)”定義是本題的關(guān)鍵.12.(1)2、3、4、5;(2)第n個(gè)等式為1+3+5+7+…+(2n+1)=n2;(3)﹣1.008016×106.【分析】(1)根據(jù)從1開始連續(xù)n各奇數(shù)的和等于奇數(shù)的個(gè)數(shù)的平方即可得到.(2)根據(jù)規(guī)律寫出即可.(3)先提取符號(hào),再用規(guī)律解題.【詳解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案為:2、3、4、5;(2)第n個(gè)等式為1+3+5+7+…+(2n+1)=(3)原式=﹣(1+3+5+7+9+…+2019)=﹣10102=﹣1.0201×106.【點(diǎn)睛】本題考查數(shù)字變化規(guī)律,解題的關(guān)鍵是找到第一個(gè)的規(guī)律,然后加以運(yùn)用即可.13.(1)C(-2,0);(2)點(diǎn)P坐標(biāo)為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明見解析.【分析】(1)由點(diǎn)A坐標(biāo)可得OA=4,再根據(jù)C點(diǎn)x軸負(fù)半軸上,AC=6即可求得答案;(2)先求出S△ABC=9,S△BOP=OP,再根據(jù)S△POB=S△ABC,可得OP=6,即可寫出點(diǎn)P的坐標(biāo);(3)先得到點(diǎn)H的坐標(biāo),再結(jié)合點(diǎn)B的坐標(biāo)可得到BH//AC,然后根據(jù)點(diǎn)M在射線CH上,分點(diǎn)M在線段CH上與不在線段CH上兩種情況分別進(jìn)行討論即可得.【詳解】(1)∵A(4,0),∴OA=4,∵C點(diǎn)x軸負(fù)半軸上,AC=6,∴OC=AC-OA=2,∴C(-2,0);(2)∵B(2,3),∴S△ABC=×6×3=9,S△BOP=OP×2=OP,又∵S△POB=S△ABC,∴OP=×9=6,∴點(diǎn)P坐標(biāo)為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明如下:∵把點(diǎn)C往上平移3個(gè)單位得到點(diǎn)H,C(-2,0),∴H(-2,3),又∵B(2,3),∴BH//AC;如圖1,當(dāng)點(diǎn)M在線段HC上時(shí),過點(diǎn)M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠BMN+∠AMN,∴∠BMA=∠HBM+∠MAC;如圖2,當(dāng)點(diǎn)M在射線CH上但不在線段HC上時(shí),過點(diǎn)M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠AMN-∠BMN,∴∠BMA=∠MAC-∠HBM;綜上,∠BMA=∠MAC±∠HBM.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo),三角形的面積,點(diǎn)的平移,平行線的判定與性質(zhì)等知識(shí),綜合性較強(qiáng),正確進(jìn)行分類并準(zhǔn)確畫出圖形是解題的關(guān)鍵.14.(1)42°;(2)見解析;(3)∠1=∠2,理由見解析【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點(diǎn)B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC-∠DBC=60°-∠1,進(jìn)而得出結(jié)論;(3)過點(diǎn)C
作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:過點(diǎn)B作BD∥a.如圖2所示:則∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:過點(diǎn)C
作CP∥a,如圖3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【點(diǎn)睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識(shí);本題綜合性強(qiáng),熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關(guān)鍵.15.【應(yīng)用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)=5;(2)2或﹣2;(3)4或8.【分析】(應(yīng)用)(1)根據(jù)若y1=y(tǒng)2,則AB∥x軸,且線段AB的長度為|x1?x2|,代入數(shù)據(jù)即可得出結(jié)論;(2)由CD∥y軸,可設(shè)點(diǎn)D的坐標(biāo)為(1,m),根據(jù)CD=2,可得|0﹣m|=2,故可求出m,即可求解;(拓展)(1)根據(jù)兩點(diǎn)之間的折線距離公式,代入數(shù)據(jù)即可得出結(jié)論;(2)根據(jù)兩點(diǎn)之間的折線距離公式結(jié)合d(E,H)=3,即可得出關(guān)于t的含絕對(duì)值符號(hào)的一元一次方程,解之即可得出結(jié)論;(3)由點(diǎn)Q在x軸上,可設(shè)點(diǎn)Q的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合三角形OPQ的面積為3即可求出x的值,再利用兩點(diǎn)之間的折線距離公式即可得出結(jié)論;【詳解】(應(yīng)用):(1)AB的長度為|﹣1﹣2|=3.故答案為:3.(2)由CD∥y軸,可設(shè)點(diǎn)D的坐標(biāo)為(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴點(diǎn)D的坐標(biāo)為(1,2)或(1,﹣2).故答案為:(1,2)或(1,﹣2).(拓展):(1)d(E,F(xiàn))=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案為:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.故答案為:2或﹣2.(3)由點(diǎn)Q在x軸上,可設(shè)點(diǎn)Q的坐標(biāo)為(x,0),∵三角形OPQ的面積為3,∴|x|×3=3,解得:x=±2.當(dāng)點(diǎn)Q的坐標(biāo)為(2,0)時(shí),d(P,Q)=|3﹣2|+|3﹣0|=4;當(dāng)點(diǎn)Q的坐標(biāo)為(﹣2,0)時(shí),d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8.故答案為:4或8.【點(diǎn)睛】本題是三角形綜合題目,考查了新定義、兩點(diǎn)間的距離公式、三角形面積等知識(shí),讀懂題意并熟練運(yùn)用兩點(diǎn)間的距離及兩點(diǎn)之間的折線距離公式是解題的關(guān)鍵.16.(1)A品牌為210元/盞,B品牌為260元/盞.(2)10盞.【分析】(1)設(shè)A品牌護(hù)眼燈的銷售價(jià)為x元/盞,B品牌護(hù)眼燈的銷售價(jià)為y元/盞,根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合兩天的銷售情況,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)采購m盞B品牌的護(hù)眼燈,則采購(30-m)盞A品牌的護(hù)眼燈,根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合總費(fèi)用不超過4900元,即可得出關(guān)于m的一元一次不等式,解之取其中的最大值即可得出結(jié)論.【詳解】(1)設(shè)A品牌護(hù)眼燈的銷售價(jià)為x元/盞,B品牌護(hù)眼燈的銷售價(jià)為y元/盞,依題意,得:,解得:.答:A品牌護(hù)眼燈的銷售價(jià)為210元/盞,B品牌護(hù)眼燈的銷售價(jià)為260元/盞.(2)設(shè)采購m盞B品牌的護(hù)眼燈,則采購(30-m)盞A品牌的護(hù)眼燈,依題意,得:150(30-m)+190m≤4900,解得:m≤10.答:B品牌的護(hù)眼燈最多采購10盞.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確列出二元一次方程組;(2)根據(jù)各數(shù)量之間的關(guān)系,正確列出一元一次不等式.銷售日期銷售數(shù)量(盞)銷售收入(元)A品牌B品牌第一天21680第二天34167017.(1)4;(2)①或;②1.【分析】(1)依照題意,分別求出和,比較大小,得出答案,(2)點(diǎn)在軸上所以橫坐標(biāo)為0,,所以點(diǎn)和點(diǎn)的縱坐標(biāo)差的絕對(duì)值應(yīng)為2,可得點(diǎn)坐標(biāo),(3)已知點(diǎn)和點(diǎn)的橫坐標(biāo)差的絕對(duì)值恒等于1,縱坐標(biāo)差的絕對(duì)是個(gè)動(dòng)點(diǎn)問題,取值范圍和1比較,可得出最小值為1.【詳解】解:(1),,,,點(diǎn)與點(diǎn)的“非常距離”為4.故答案為:4.(2)①點(diǎn)在軸上所以橫坐標(biāo)為0,點(diǎn)和點(diǎn)的縱坐標(biāo)差的絕對(duì)值應(yīng)為2,設(shè)點(diǎn)的縱坐標(biāo)為,,解得或,點(diǎn)的坐標(biāo)為或,故點(diǎn)的坐標(biāo)為或;②最小值為1,理由為已知點(diǎn)和點(diǎn)的橫坐標(biāo)差的絕對(duì)值恒等于1,,設(shè)點(diǎn)的縱坐標(biāo)為,當(dāng)時(shí),,可得點(diǎn)與點(diǎn)的“非常距離”為1,當(dāng)或時(shí),,可得點(diǎn)與點(diǎn)的“非常距離”為.,點(diǎn)與點(diǎn)的“非常距離”的最小值為1,故點(diǎn)與點(diǎn)的“非常距離”的最小值為1.【點(diǎn)睛】本題考查了直角坐標(biāo)系坐標(biāo)結(jié)合絕對(duì)值的應(yīng)用,是新定義問題,難點(diǎn)在于第三問的動(dòng)點(diǎn)位置取值范圍討論,需要學(xué)生根據(jù)題意正確討論.18.(1),,;(2)存在,或;(3)存在,或;(4)存在,的縱坐標(biāo)總是4或.或者:點(diǎn)在平行于軸且與軸的距離等于4的兩條直線上;或者:點(diǎn)在直線或直線上【分析】(1)根據(jù)點(diǎn)的平移規(guī)律,即可得到對(duì)應(yīng)點(diǎn)坐標(biāo);(2)由,可以得到,即可得到P點(diǎn)坐標(biāo);(3)由,可以得到,結(jié)合點(diǎn)C坐標(biāo),就可以求得點(diǎn)Q坐標(biāo);(4)由,可以AB邊上的高的長度,從而得到點(diǎn)的坐標(biāo)規(guī)律.【詳解】(1)∵點(diǎn),點(diǎn)∴向上平移3個(gè)單位,再向右平移1個(gè)單位之后對(duì)應(yīng)點(diǎn)坐標(biāo)為,點(diǎn)∴∴(2)存在,理由如下:∵即:=12∴∴或(3)存在,理由如下:∵即:∵∴∵∴或(4)存在:理由如下:∵∴設(shè)中,AB邊上的高為h則:∴∴點(diǎn)在直線或直線上【點(diǎn)睛】本題考查直角坐標(biāo)系中點(diǎn)的坐標(biāo)平移規(guī)律,由點(diǎn)到坐標(biāo)軸的距離確定點(diǎn)坐標(biāo)等知識(shí)點(diǎn),根據(jù)相關(guān)內(nèi)容解題是關(guān)鍵.19.(1)白紙有100噸,作業(yè)本有90噸;(2)69520元【分析】(1)設(shè)白紙有噸,作業(yè)本有噸,根據(jù)共支出公路運(yùn)費(fèi)4200元,鐵路運(yùn)費(fèi)26280元.列出二元一次方程組,解之即可;(2)由銷售款(白紙的購進(jìn)款與運(yùn)輸費(fèi)的和),進(jìn)行計(jì)算即可.【詳解】解:(1)設(shè)白紙有噸,作業(yè)本有噸,由題意,得,整理得:,解得.答:白紙有100噸,作業(yè)本有90噸;(2)(元).答:這批作業(yè)本的銷售款比白紙的購進(jìn)款與運(yùn)輸費(fèi)的和多69520元.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是找準(zhǔn)等量關(guān)系,正確列出二元一次方程組.20.(1)g(-1)=2g(-2)=-1(2)a=-4(3)a=,b=-4.【解析】【分析】(1)將x=-1和x=-2分別代入可得出答案;(2)將x=代入可得關(guān)于a的一元一次方程,解出即可;(3)由f(1)=0,把x=1代入可得關(guān)于a、b、k的方程,根據(jù)無論k為何值時(shí),都成立就可求出a、b的值.【詳解】(1)由題意得:g(-1)=-2×(-1)2-3×(-1)+1=2;g(-2)=-2×(-2)2-3×(-2)+1=-1;(2)由題意得:,解得:a=-4;(3)∵k無論為何值,總有f(1)=0,∴=0,則當(dāng)k=1、k=0時(shí),可得方程組,解得:.【點(diǎn)睛】本題考查了代數(shù)式求值、解一元一次方程、一元一次方程的解、解二元一次方程組等,讀懂新定義是解題的關(guān)鍵.21.(1)七(1)班有47人,七(2)班有51人;(2)如果兩個(gè)班聯(lián)合起來買票,不可以買單價(jià)為9元的票,省錢的方法,可以買101張票,多余的作廢即可【解析】【分析】(1)由兩個(gè)班聯(lián)合起來,作為一個(gè)團(tuán)體購票,則需付1078元可知:可得票價(jià)不是9元,所以兩個(gè)班的總?cè)藬?shù)沒有超過100人,設(shè)七(1)班有x人,七(2)班有y人,可列方程組,解方程組即可得答案;(2)如果兩班聯(lián)合起來作為一個(gè)團(tuán)體購票,則每張票11元,省錢的方法,可以買101張票,多余的作廢即可?!驹斀狻拷猓海?)∵兩個(gè)班聯(lián)合起來,作為一個(gè)團(tuán)體購票,則需付1078元有∵可得票價(jià)不是9元,所以兩個(gè)班的總?cè)藬?shù)沒有超過100人,∴設(shè)七(1)班有x人,七(2)班有y人,依題意得:∴七(1)班有47人,七(2)班有51人(2)因?yàn)?7+51=98<100∴如果兩個(gè)班聯(lián)合起來買票,不可以買單價(jià)為9元的票∴省錢的方法,可以買101張票,多余的作廢即可??墒。骸军c(diǎn)睛】熟練掌握二元一次方程組的實(shí)際問題是解題的關(guān)鍵。22.(1)和的度數(shù)分別為和;(2)見解析;(3)【分析】根據(jù),解二元一次方程組,求出和的度數(shù);根據(jù)平行線判定定理,判定;由“是的平分線”:,再根據(jù)平行線判定定理,求出的度數(shù).【詳解】解:(1)①②,得,,代入①得和的度數(shù)分別為和.(2),(3)是的平分線,【點(diǎn)睛】本題運(yùn)用二元一次方程組給出已知條件,熟練掌握二元一次方程組的解法以及平行線相關(guān)定理是解題的關(guān)鍵.23.(1),,;(2)見解析.【分析】(1)令中的,求出相應(yīng)的x的值,即可得到A的坐標(biāo),將方程和方程聯(lián)立成方程組,解方程組即可得到C的坐標(biāo),進(jìn)而可得到B的坐標(biāo);(2)分別利用梯形的面積公式表示出四邊形MNAC的面積與四邊形MNOB的面積,然后根據(jù)t的范圍,分情況討論即可.【詳解】(1)令,則,解得,.解得.軸,∴點(diǎn)B的縱坐標(biāo)與點(diǎn)C的縱坐標(biāo)相同,;(2),,,.∵點(diǎn)M從點(diǎn)C以每秒1個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí)點(diǎn)N從點(diǎn)O以每秒1.5個(gè)單位長度的速度向右運(yùn)動(dòng),,,,.當(dāng)時(shí),即時(shí),;當(dāng)時(shí),即時(shí),;當(dāng)時(shí),即時(shí),.【點(diǎn)睛】本題主要考查二元一次方程及方程組的應(yīng)用,數(shù)形結(jié)合并分情況討論是解題的關(guān)鍵.24.(1)?3,4,4;(2)(0,)或(0,);(3)n<?5或n>?1【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)構(gòu)建方程組,求出a和b,再根據(jù)BC∥x軸,可得c的值;(2)當(dāng)點(diǎn)D在直線AB的下方時(shí),如圖1?1中,延長BC交y軸于E(0,4),連接AE.設(shè)D(0,m).當(dāng)點(diǎn)D在直線AB的上方時(shí),如圖1?2中,連接OB,設(shè)D(0,m).分別構(gòu)建方程,可得結(jié)論.(3)如圖2中,當(dāng)點(diǎn)N在點(diǎn)A的右側(cè)時(shí),連接MN,OB,設(shè)M(a,b),利用面積法求出b的值,再求出S△BNM=S△BCM時(shí),n的值,同法求出當(dāng)點(diǎn)N在點(diǎn)的左側(cè)時(shí),且S△BNM=S△BCM時(shí),n的值,結(jié)合圖象可得結(jié)論.【詳解】解:(1)∵,又∵≥0,|2a?b+10|≥0,∴a+b?1=0且2a?b+10=0,∴a=?3,b=4,∵BC∥x軸,∴c=4,∴a=?3,b=4,c=4,故答案為:?3,4,4;(2)當(dāng)點(diǎn)D在直線AB的下方時(shí),如圖1?1中,延長BC交y軸于E(0,4),連接AE.設(shè)D(0,m).∵S△ABD=S△AED+S△BDE?S△ABE=S△ABC,∴×(4?m)×3+×(4?m)×4?×4×4=×2×4,∴m=;當(dāng)點(diǎn)D在直線AB的上方時(shí),如圖1?2中,連接OB,設(shè)D(0,m).∵S△ABD=S△ADO+S△ODB?S△ABO=S△ABC,∴×m×3+×m×4?×3×4=×2×4,∴m=.綜上所述,滿足條件的點(diǎn)D的坐標(biāo)為(0,)或(0,).(3)如圖2中,當(dāng)點(diǎn)N點(diǎn)A的右側(cè)時(shí),連接MN,OB.設(shè)M(a,b),∵S△BCM=S△OBC?(S△AOB?S△AOM),∴×2×(4?b)=×2×4?(×3×4?12×3×b),解得b=,當(dāng)S△BNM=S△BCM時(shí),則有×(n+3)×4?×(n+3)×=×2×(4?),解得n=?1,當(dāng)點(diǎn)N在點(diǎn)A的左側(cè)時(shí),且S△BNM=S△BCM時(shí),同法可得n=?5,觀察圖象可知,滿足條件的n的值為n<?5或n>?1.【點(diǎn)睛】本題屬于三角形綜合題,考查了三角形的面積,非負(fù)數(shù)的性質(zhì),平行線的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問題,學(xué)會(huì)利用未知數(shù)構(gòu)建方程解決問題,對(duì)于初一學(xué)生來說題目有一定的難度.25.(1)見解析;(2);(3)或【分析】(1),轉(zhuǎn)化為不等式組;(2)根據(jù)方法二的步驟解答即可;(3)根據(jù)方法二的步驟解答,得出,即可得到結(jié)論.【詳解】解:(1),轉(zhuǎn)化為不等式組;(2),不等式的左、中、右同時(shí)減去3,得,同時(shí)除以,得;(3),不等式的左、中、右同時(shí)乘以3,得,同時(shí)加5,得,的整數(shù)值或.【點(diǎn)睛】本題考查了解一元一次不等式組,參照方法二解不等式組是解題的關(guān)鍵,應(yīng)用的是不等式的性質(zhì).26.當(dāng)x小于5時(shí),方案二省錢;當(dāng)x=5時(shí),兩種方案費(fèi)用相同;當(dāng)x大于5且不大于12時(shí)時(shí),方案一省錢【分析】先根據(jù)題意列出方案一的費(fèi)用:起步價(jià)+超過3km的km數(shù)×1.6元+回程的空駛費(fèi)+乘公交的費(fèi)用,再求出方案二的費(fèi)用:起步價(jià)+超過3km的km數(shù)×1.6元+返回
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年可持續(xù)時(shí)尚產(chǎn)業(yè)報(bào)告及未來五至十年環(huán)保紡織技術(shù)報(bào)告
- 小學(xué)語文四年級(jí)下冊(cè)《慈母情深》教學(xué)設(shè)計(jì)
- 數(shù)字時(shí)代背景下在線學(xué)習(xí)社區(qū)教師數(shù)字素養(yǎng)協(xié)同發(fā)展路徑探究教學(xué)研究課題報(bào)告
- 高中歷史競賽:機(jī)器學(xué)習(xí)在氣象歷史事件分析中的應(yīng)用研究教學(xué)研究課題報(bào)告
- 人工智能在教育智能教學(xué)輔助工具的個(gè)性化定制與優(yōu)化教學(xué)研究課題報(bào)告
- 寧波浙江寧波市鄞州區(qū)第二醫(yī)院醫(yī)共體姜山分院編外人員招聘筆試歷年參考題庫附帶答案詳解
- 哈爾濱哈爾濱商業(yè)大學(xué)2025年下半年事業(yè)單位招聘18人筆試歷年參考題庫附帶答案詳解
- 吉林2025年扶余市事業(yè)單位招聘含專項(xiàng)招聘高校畢業(yè)生(2號(hào))筆試歷年參考題庫附帶答案詳解
- 北京2025年中國健康教育中心編內(nèi)崗位社會(huì)招聘5人筆試歷年參考題庫附帶答案詳解
- 伊春伊春市2025年下半年事業(yè)單位招聘228人筆試歷年參考題庫附帶答案詳解
- 煤礦基本知識(shí)培訓(xùn)課件
- GB/T 9754-2025色漆和清漆20°、60°和85°光澤的測(cè)定
- 運(yùn)輸合同轉(zhuǎn)包協(xié)議書范本
- 碳排放監(jiān)測(cè)與控制技術(shù)-洞察闡釋
- 回顧性研究設(shè)計(jì)及寫作要點(diǎn)
- 中藥儲(chǔ)存養(yǎng)護(hù)管理制度
- T/CECS 10128-2021不銹鋼二次供水水箱
- 2025屆山東省臨沂市高三二模生物試題(解析版)
- 專利侵權(quán)訴訟合同范例
- 銀行審計(jì)試題解析及答案
- 自適應(yīng)巡航控制與跟車技術(shù)-深度研究
評(píng)論
0/150
提交評(píng)論