版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
河南省沁陽市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,若,,則:①;②;③平分;④;⑤,其中正確的結(jié)論是A.1個 B.2個 C.3個 D.4個2、如圖,在△ABC中,點D在AB上,點E在AC上,DE∥BC.若∠A=62°,∠AED=54°,則∠B的大小為()A.54° B.62° C.64° D.74°3、如圖,在三角形ABC中,,,D是BC上一點,將三角形ABD沿AD翻折后得到三角形AED,邊AE交射線BC于點F,若,則(
)A.120° B.135° C.110° D.150°4、下列圖形中,由AB∥CD,能得到∠1=∠2的是(
)A. B.C. D.5、如圖,將沿著平行于的直線折疊,點落在點處,若,則的度數(shù)是(
)A.108° B.104° C.96° D.92°6、如圖,在中,,,平分,則的度數(shù)是(
)A. B. C. D.7、用反證法證明命題“三角形中必有一個內(nèi)角小于或等于60°”時,首先應(yīng)該假設(shè)這個三角形中()A.有一個內(nèi)角小于60° B.每一個內(nèi)角都小于60°C.有一個內(nèi)角大于60° D.每一個內(nèi)角都大于60°8、一把直尺和一塊三角板(含、角)如圖所示擺放,直尺一邊與三角板的兩直角邊分別交于點和點,另一邊與三角板的兩直角邊分別交于點和點,且,那么的大小為()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,若AB⊥BC,BC⊥CD,則直線AB與CD的位置關(guān)系是______.2、如圖,在中,,和的平分線交于點,得和的平分線交于點,得和的平分線交于點,得和的平分線交于點,得,則________度.3、如圖,在△ABC中,∠ACB=60°,D為△ABC邊AC上一點,BC=CD,點M在BC的延長線上,CE平分∠ACM,且AC=CE.連接BE交AC于F,G為邊CE上一點,滿足CG=CF,連接DG交BE于H.以下結(jié)論:①△ABC≌△EDC;②∠DHF=60°;③若∠A=60°,則AB∥CE;④若BE平分∠ABC中,則EB平分∠DEC;正確的有_____(只填序號)4、把“等角的余角相等”改寫成“如果……那么……”的形式是_________,________,該命題是___命題(填“真”或“假”).5、如圖,將分別含有、角的一副三角板重疊,使直角頂點重合,若兩直角重疊形成的角為,則圖中角的度數(shù)為_______.6、如圖,在△ABC中,∠A=52°,∠ABC與∠ACB的角平分線交于點D1,∠ABD1與∠ACD1的角平分線交于點D2,則∠BD2C的度數(shù)是_____.7、命題“全等三角形的對應(yīng)角相等”的逆命題是_____命題.(填“真”或“假”)三、解答題(7小題,每小題10分,共計70分)1、如圖,點D和點C在線段BE上,,,.求證:.2、如圖,已知∠1+∠AFE=180°,∠A=∠2,求證:∠A=∠C+∠AFC證明:∵∠1+∠AFE=180°∴CD∥EF(,)∵∠A=∠2
∴()(,)∴AB∥CD∥EF(,)∴∠A=,∠C=,(,)∵∠AFE=∠EFC+∠AFC,∴=.3、已知:如圖AB⊥BC于B,CD⊥BC于C,∠1=∠2.求證:BE∥CF.證明:∵AB⊥BC,CD⊥BC(已知)∴∠ABC=90°,∠BCD=90°()即∠1+∠3=90°,∠2+∠4=90°又∵∠1=∠2()∴=()∴BE∥CF()4、如圖,∠ABC=31°,又∠BAC的平分線AE與∠FCB的平分線CE相交于E點,求∠AEC的度數(shù).5、已知:直線EF分別與直線AB,CD相交于點G,H,并且∠AGE+∠DHE=180°.(1)如圖1,求證:AB∥CD;(2)如圖2,點M在直線AB,CD之間,連接GM,HM,求證:∠M=∠AGM+∠CHM;(3)如圖3,在(2)的條件下,射線GH是∠BGM的平分線,在MH的延長線上取點N,連接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度數(shù).6、如圖,在中,.(1)如圖①所示,直線過點,于點,于點,且.求證:.(2)如圖②所示,直線過點,交于點,交于點,且,則是否成立?請說明理由.7、如圖,BD⊥AC于點D,EF⊥AC于點F,∠AMD=∠AGF,∠1=∠2=35°.(1)求∠GFC的度數(shù);(2)求證:DM∥BC.-參考答案-一、單選題1、C【解析】【分析】由平行線的性質(zhì)得出內(nèi)錯角相等、同位角相等,得出②正確;再由已知條件證出,得出,①正確;由平行線的性質(zhì)得出⑤正確;即可得出結(jié)果.【詳解】解:,,,故②正確;,,,故①正確;,故⑤正確;而不一定平分,不一定等于,故③,④錯誤;故選:C.【考點】本題考查了平行線的判定與性質(zhì),解題的關(guān)鍵是熟練掌握平行線的判定與性質(zhì),并能進行推理論證.2、C【解析】【詳解】解:∵DE∥BC,∴∠C=∠AED=54°,∵∠A=62°,∴∠B=180°﹣∠A﹣∠C=64°,故選C.點睛:本題考查了平行線的性質(zhì),三角形的內(nèi)角和,熟練掌握三角形的內(nèi)角和是解題的關(guān)鍵.3、A【解析】【分析】由得到∠FDE=∠C=60°,由折疊的性質(zhì)知∠DEF=∠B=30°,得到∠DFE=180°-∠FDE-∠DEF=90°,由外角的性質(zhì)得∠ADC+60°=∠ADE=∠BDA,∠ADB+∠ADC=180°,進一步求得∠ADC=60°,進一步求得∠BDA.【詳解】解:∵,∴∠FDE=∠C=60°,∵三角形ABD沿AD翻折后得到三角形AED,∴∠DEF=∠B=30°,∴∠DFE=180°-∠FDE-∠DEF=90°,∵∠ADC+60°=∠ADE=∠BDA,∠ADB+∠ADC=180°,∴∠ADC+60°+∠ADC=180°,∴∠ADC=60°,∴∠BDA=∠ADC+60°=120°,故選:A【考點】此題考查了折疊的性質(zhì),平行線性質(zhì),外角的性質(zhì)等知識,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)逐項判斷即可.【詳解】A、∵AB//CD,∴∠1+∠2=180°.故本選項不符合題意;B、如圖,∵AB//CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本選項正確.C、∵AB//CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本選項不符合題意;D、當(dāng)梯形ABDC是等腰梯形時才有,∠1=∠2.故本選項不符合題意.故選:B.【考點】本題考查平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解答的關(guān)鍵.5、D【解析】【分析】根據(jù)兩直線平行,同位角相等可得∠ADE=∠B,再根據(jù)翻折變換的性質(zhì)可得∠A′DE=∠ADE,然后根據(jù)平角等于180°列式計算即可得解.【詳解】解:∵,∴∠ADE=∠B=44°,∵△ABC沿著平行于BC的直線折疊,點A落到點A′,∴∠A′DE=∠ADE=44°,∴∠A′DB=180°﹣44°﹣44°=92°.故選:D.【考點】本題考查了平行線的性質(zhì),翻折變換的性質(zhì),三角形的內(nèi)角和定理,熟記性質(zhì)并準(zhǔn)確識圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.6、C【解析】【分析】在中,利用三角形內(nèi)角和為求,再利用平分,求出的度數(shù),再在利用三角形內(nèi)角和定理即可求出的度數(shù).【詳解】∵在中,,.∴.∵平分.∴.∴.故選C.【考點】本題考查了三角形的內(nèi)角和和角平分線的性質(zhì),熟練應(yīng)用性質(zhì)是解決問題的關(guān)鍵.7、D【解析】【分析】根據(jù)反證法的證明步驟解答即可.【詳解】解:用反證法證明“三角形中必有一個內(nèi)角小于或等于60°”時,應(yīng)先假設(shè)三角形中每一個內(nèi)角都不小于或等于60°,即每一個內(nèi)角都大于60°.故選:D.【考點】本題考查反證法,熟知反證法的證明步驟,正確得出原結(jié)論的反面是解答的關(guān)鍵.8、B【解析】【分析】先利用三角形外角性質(zhì)得到∠FDE=∠C+∠CED=140°,然后根據(jù)平行線的性質(zhì)得到∠BFA的度數(shù).【詳解】,∵,∴.故選B.【考點】本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.二、填空題1、AB∥CD【解析】【詳解】∵AB⊥BC,BC⊥CD,∴∠ABC=∠BCD=90°,∴AB∥CD,故答案為AB∥CD.2、【解析】【分析】根據(jù)角平分線的定義,由BA1平方∠ABC,A1C平分∠ACD,得∠A1CD=∠ACD,∠A1BC=∠ABC.根據(jù)三角形外角的性質(zhì),得∠A1=∠A1CD-∠A1BC,那么∠A1=∠ACD?ABC=∠A.再根據(jù)特殊到一般的數(shù)學(xué)思想解決此題.【詳解】解:∵BA1平分∠ABC,A1C平分∠ACD,∴∠A1CD=∠ACD,∠A1BC=∠ABC.∵∠A1=∠A1CD-∠A1BC,∴∠A1=∠ACD?ABC=∠A.同理可證:∠A2=∠A1.∴∠A2=?∠A=()2∠A.以此類推,∠An=()n∠A.當(dāng)n=2022,∠A2021=()2022∠A=()2022?m°=()°.故答案為:.【考點】本題主要考查三角形外角的性質(zhì)、角平分線的定義,熟練掌握三角形外角的性質(zhì)、角平分線的定義是解決本題的關(guān)鍵.3、①②③④【解析】【分析】①可推導(dǎo)∠ACB=∠ACE=60°,進而可證全等;②先證△BFC≌△DGC,得到∠FBC=∠CDG,∠BFC=∠DFH,從而推導(dǎo)得出∠BCF=∠DHF=60°;③由∠A=60°,∠ACE=60°,可得∠A=∠ACE,即可得出ABCE;④利用△BCE的外角∠ECM和△ABC的外角∠ACM的關(guān)系,結(jié)合∠DEC=∠A可推導(dǎo)得出.【詳解】解:∵∠ACB=60°,∴∠ACM=180°?∠ACB=120°,∵CE平分∠ACM,∴∠ACE=∠MCE=∠ACM=60°,∴∠ACB=∠ACE.在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),故①正確;在△BCF和△DCG中,,∴△BCF≌△DCG(SAS).∴∠CBF=∠CDG.∵∠ECM=∠CBF+∠BEC=60°,∴∠CDG+∠CEB=60°.∵∠DCE+∠CDE+∠CED=180°,∠DCE=60°,∴∠CDE+∠CED=120°,∴∠HDE+∠HED=60°,∴∠DHF=∠HDE+∠HED=60°,故②正確;∵∠A=60°,∠ACE=60°,∴∠A=∠ACE,∴AB∥CE,故③正確;∵BE平分∠ABC,∴∠ABE=∠CBE.∵△BCF≌△DCG,∴∠CBE=∠CDG.∴∠CDG=∠ABE=∠CBE.∵△ABC≌△EDC,∴∠ABC=∠CDE,∴∠CDG=∠ABE=∠CBE=∠EDG.∵∠ECM=∠CBF+∠BEC=60°,∠DHF=∠EDG+∠DEB=60°,∴∠CBF+∠BEC=∠EDG+∠DEB,∴∠BEC=∠DEB,即EB平分∠DEC,故④正確;綜上,正確的結(jié)論有:①②③④.故答案為:①②③④.【考點】本題主要考查了全等三角形的判定定理和性質(zhì)定理,角平分線的定義,三角形的內(nèi)角和定理以及平行線的判定定理,正確找出圖中的全等三角形是解題的關(guān)鍵.4、如果兩個角是等角的余角,那么這兩個角相等;真【解析】【分析】命題由題設(shè)和結(jié)論兩部分組成.題設(shè)是已知事項,結(jié)論是由已知事項推出的事項.命題常??梢詫憺椤叭绻敲础钡男问?,如果后面接題設(shè),那么后面接結(jié)論.題設(shè)成立,結(jié)論也成立的叫真命題,而題設(shè)成立,不保證結(jié)論成立的為假命題.【詳解】把“等角的余角相等”改寫成“如果…那么…”的形式是:如果兩個角是等角的余角,那么這兩個角相等.這個命題正確,是真命題,故答案為如果兩個角是等角的余角,那么這兩個角相等;真.【考點】本題考查了命題與定理,命題的“真”“假”是就命題的內(nèi)容而言.任何一個命題非真即假.要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.5、##140度【解析】【分析】如圖,首先標(biāo)注字母,利用三角形的內(nèi)角和求解,再利用對頂角的相等,三角形的外角的性質(zhì)可得答案.【詳解】解:如圖,標(biāo)注字母,由題意得:故答案為:【考點】本題考查的是三角形的內(nèi)角和定理,三角形的外角的性質(zhì),掌握以上知識是解題的關(guān)鍵.6、84°##84度【解析】【分析】利用角平分線的定義∠ABD2=∠ABD1=,∠ACD2=∠ACD1=,求出∠CBD2=,,再根據(jù)三角形的內(nèi)角和定理以及,再把∠A代入即可求∠BD2C的度數(shù).【詳解】解:∵BD1、CD1分別平分∠ABC和∠ACB,∴∠D1BA=∠D1BC=∠ABC,∠D1CA=∠D1CB=∠ACB,∵BD2、CD2分別平分∠ABD1和∠ACD1,∴∠ABD2=∠ABD1=,∠ACD2=∠ACD1=,∴∠CBD2=,∴,∴∠BD2C=180°-(∠D2BC+∠D2CB)=180°-(∠ABC+∠ABC),當(dāng)∠A=52°時,∠BD2C=180°-×(180°-52°),=84°.故答案為84°.【考點】此題考查三角形內(nèi)角和定理,解題關(guān)鍵在于利用角平分線的定義進行有關(guān)計算.7、假【解析】【分析】首先分清題設(shè)是:兩個三角形全等,結(jié)論是:對應(yīng)角相等,把題設(shè)與結(jié)論互換即可得到逆命題,然后判斷正誤即可.【詳解】解:“全等三角形的對應(yīng)角相等”的題設(shè)是:兩個三角形全等,結(jié)論是:對應(yīng)角相等,因而逆命題是:對應(yīng)角相等的三角形全等.是一個假命題.故答案為:假.【考點】本題考查了互逆命題的知識,兩個命題中,如果第一個命題的條件是第二個命題的結(jié)論,而第一個命題的結(jié)論又是第二個命題的條件,那么這兩個命題叫做互逆命題.其中一個命題稱為另一個命題的逆命題.命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.三、解答題1、見解析【解析】【分析】根據(jù)平行線的性質(zhì)證(SAS)即可求證;【詳解】證明:∵,∴.∴.∵,∴.在和中∵∴(SAS).∴∴.【考點】本題主要考查三角形的全等證明、平行線的性質(zhì),掌握相關(guān)知識并靈活應(yīng)用是解題的關(guān)鍵.2、同旁內(nèi)角互補兩直線平行;AB∥CD;同位角相等,兩直線平行;兩條直線都與第三條直線平行,則這兩直線也互相平行;∠AFE,∠EFC;兩直線平行,內(nèi)錯角相等;∠A,∠C+∠AFC.【解析】【分析】根據(jù)同旁內(nèi)角互補,兩直線平行可得CD∥EF,根據(jù)∠A=∠2利用同位角相等,兩直線平行,AB∥CD,根據(jù)平行同一直線的兩條直線平行可得AB∥CD∥EF根據(jù)平行線的性質(zhì)可得∠A=∠AFE
,∠C=∠EFC,根據(jù)角的和可得∠AFE=∠EFC+∠AFC即可.【詳解】證明:∵∠1+∠AFE=180°∴CD∥EF(同旁內(nèi)角互補,兩直線平行),∵∠A=∠2,∴(AB∥CD)(同位角相等,兩直線平行),∴AB∥CD∥EF(兩條直線都與第三條直線平行,則這兩直線也互相平行)∴∠A=∠AFE,∠C=∠EFC,(兩直線平行,內(nèi)錯角相等)∵∠AFE=∠EFC+∠AFC,∴∠A=∠C+∠AFC.故答案為:同旁內(nèi)角互補兩直線平行;AB∥CD;同位角相等,兩直線平行;兩條直線都與第三條直線平行,則這兩直線也互相平行;∠AFE,∠EFC;兩直線平行,內(nèi)錯角相等;∠A,∠C+∠AFC.【考點】本題考查平行線的性質(zhì)與判定,角的和差,掌握平行線的性質(zhì)與判定是解題關(guān)鍵.3、見解析【解析】【分析】由垂直的定義得∠ABC=90°,∠BCD=90°,即∠1+∠3=90°,∠2+∠4=90°,求出∠3=∠4,即可得出結(jié)論.【詳解】解:,∵AB⊥BC,CD⊥BC(已知),∴∠ABC=90°,∠BCD=90°(垂直的定義),即∠1+∠3=90°,∠2+∠4=90°,又∵∠1=∠2(已知),∴∠3=∠4(等角的余角相等),∴BE∥CF(內(nèi)錯角相等,兩直線平行).【考點】本題考查了平行線的判定以及垂直的定義;熟練掌握平行線的判定方法是解題的關(guān)鍵.4、∠AEC的度數(shù)為15.5°.【解析】【分析】根據(jù)角平分線的定義可得∠EAC=∠BAC,∠ECF=∠BCF,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠BCF=∠ABC+∠BAC,∠ECF=∠AEC+∠EAC,然后整理即可得到∠AEC=∠ABC.【詳解】解:∵AE、CE分別是∠BAC和∠BCF的平分線,∴∠EAC=∠BAC,∠ECF=∠BCF,由三角形的外角性質(zhì)得,∠BCF=∠ABC+∠BAC,∠ECF=∠AEC+∠EAC,∴∠AEC+∠EAC=(∠ABC+∠BAC),∴∠AEC=∠ABC,∵∠ABC=31°,∴∠AEC=×31=15.5°.【考點】本題考查了三角形的內(nèi)角和定理,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),角平分線的定義,熟記性質(zhì)與定理并求出∠AEC=∠ABC是解題的關(guān)鍵.5、(1)見解析;(2)見解析;(3)60°【解析】【分析】(1)根據(jù)已知條件和對頂角相等即可證明;(2)如圖2,過點M作MR∥AB,可得AB∥CD∥MR.進而可以證明;(3)如圖3,令∠AGM=2α,∠CHM=β,則∠N=2α,∠M=2α+β,過點H作HT∥GN,可得∠MHT=∠N=2α,∠GHT=∠FGN=2β,進而可得結(jié)論.【詳解】(1)證明:如圖1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.∴∠BGF+∠DHE=180°,∴AB∥CD;(2)證明:如圖2,過點M作MR∥AB,又∵AB∥CD,∴AB∥CD∥MR.∴∠GMR=∠AGM,∠HMR=∠CHM.∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.(3)解:如圖3,令∠AGM=2α,∠CHM=β,則∠N=2α,∠M=2α+β,∵射線GH是∠BGM的平分線,∴,∴∠AG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026 年初中英語《代詞》專項練習(xí)與答案 (100 題)
- 《GAT 328-2001犯罪嫌疑人和罪犯司法登記照相規(guī)則》專題研究報告
- 2026年大學(xué)大二(酒店品牌管理)酒店品牌連鎖運營策略綜合測試題及答案
- 2026年深圳中考物理創(chuàng)新題型特訓(xùn)試卷(附答案可下載)
- 2026年深圳中考生物生物圈中的人試卷(附答案可下載)
- 濕地知識題庫及答案解析
- 馬原題庫及答案大學(xué)
- 2026年人教版數(shù)學(xué)七年級下冊期末質(zhì)量檢測卷(附答案解析)
- 車輛稅務(wù)知識培訓(xùn)課件
- 2026年果樹技術(shù)培訓(xùn)合同
- GJB373B-2019引信安全性設(shè)計準(zhǔn)則
- 工業(yè)管道安裝施工組織設(shè)計方案
- 浙江省義烏小商品出口貿(mào)易問題研究
- 非遺技藝傳承活動策劃與實施
- GB/T 45494-2025項目、項目群和項目組合管理背景和概念
- 票務(wù)服務(wù)合同協(xié)議
- 二零二五版醫(yī)院物業(yè)管理服務(wù)合同標(biāo)準(zhǔn)范例
- 漁獲物船上保鮮技術(shù)規(guī)范(DB3309-T 2004-2024)
- 東北大學(xué)2015年招生簡章
- 資金管理辦法實施細(xì)則模版(2篇)
- IATF16949-質(zhì)量手冊(過程方法無刪減版)
評論
0/150
提交評論