重難點解析人教版8年級數學上冊《全等三角形》定向訓練試題(解析版)_第1頁
重難點解析人教版8年級數學上冊《全等三角形》定向訓練試題(解析版)_第2頁
重難點解析人教版8年級數學上冊《全等三角形》定向訓練試題(解析版)_第3頁
重難點解析人教版8年級數學上冊《全等三角形》定向訓練試題(解析版)_第4頁
重難點解析人教版8年級數學上冊《全等三角形》定向訓練試題(解析版)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數學上冊《全等三角形》定向訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、已知銳角,如圖,(1)在射線上取點,,分別以點為圓心,,長為半徑作弧,交射線于點,;(2)連接,交于點.根據以上作圖過程及所作圖形,下列結論錯誤的是(

)A. B.C.若,則 D.點在的平分線上2、如圖為了測量B點到河對面的目標A之間的距離,在B點同側選擇了一點C,測得∠ABC=65°,∠ACB=35°,然后在M處立了標桿,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以測得MB的長就是A,B兩點間的距離,這里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA3、如圖,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,連接AC,BD交于點M,連接OM,下列結論:①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.其中正確的個數為()A.4 B.3 C.2 D.14、如圖,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,則∠AFE的度數等于()A.148° B.140° C.135° D.128°5、如圖,已知是的角平分線,是的垂直平分線,,,則的長為(

)A.6 B.5 C.4 D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在中,,以點為圓心,任意長為半徑作弧,分別交于和,再分別以點為圓心,大于二分之一為半徑作弧,兩弧交于點,連接并延長交于點,過點作于.若,則的面積為________.2、在△ABC中,AB=5,BC邊上的中線AD=4,則AC的長m的取值范圍是_______.3、已知∠AOB=60°,OC是∠AOB的平分線,點D為OC上一點,過D作直線DE⊥OA,垂足為點E,且直線DE交OB于點F,如圖所示.若DE=2,則DF=_____.4、如圖,中,以點O為圓心,任意長為半徑作弧,交于點M,交于點N,分別以點M,N為圓心,以大于的長為半徑作弧,兩弧交于點C,作射線,過點C作于點D.交于點E,若,則的度數為_______________.5、如圖,在中,按以下步驟作圖:①以點B為圓心,任意長為半徑作弧,分別交AB、BC于點D、E.②分別以點D、E為圓心,大于的同樣長為半徑作弧,兩弧交于點F.③作射線BF交AC于點G.如果,,的面積為18,則的面積為________.三、解答題(5小題,每小題10分,共計50分)1、在△ABC中,∠ACB=90°,AC=BC,且AD⊥MN于D,BE⊥MN于E.(1)直線MN繞點C旋轉到圖(1)的位置時,求證:DE=AD+BE;(2)當直線MN繞點C旋轉到圖(2)的位置時,試問DE、AD、BE具有怎樣的等量關系?請直接寫出這個等量關系(不寫證明過程);(3)當直線MN繞點C旋轉到圖(3)的位置時,試問DE、AD、BE具有怎樣的等量關系?請直接寫出這個等量關系(不寫證明過程).2、已知如圖,△ABC中,AB=AC,D、E分別是AC、AB上的點,M、N分別是CE、BD上的點,若MA⊥CE,AN⊥BD,AM=AN.求證:EM=DN.3、如圖,在中,AB=AC,D是BA延長線上一點,E是AC的中點,連接DE并延長,交BC于點M,∠DAC的平分線交DM于點F.求證:AF=CM.4、在湖的兩岸A、B間建一座觀賞橋,由于條件限制,無法直接度量A、B兩點間的距離.請你用學過的數學知識按以下要求設計一測量方案.(1)畫出測量圖案;(2)寫出測量步驟(測量數據用字母表示);(3)計算AB的距離(寫出求解或推理過程,結果用字母表示).5、如圖,在中,D是邊上的點,,垂足分別為E,F(xiàn),且.求證:.-參考答案-一、單選題1、C【解析】【分析】根據題意可知,即可推斷結論A;先證明,再證明即可證明結論B;連接OP,可證明可證明結論D;由此可知答案.【詳解】解:由題意可知,,,故選項A正確,不符合題意;在和中,,,在和中,,,,故選項B正確,不符合題意;連接OP,,,在和中,,,,點在的平分線上,故選項D正確,不符合題意;若,,則,而根據題意不能證明,故不能證明,故選項C錯誤,符合題意;故選:C.【考點】本題考查角平分線的判定,全等三角形的判定與性質,明確以某一半徑畫弧時,準確找到相等的線段是解題的關鍵.2、D【解析】【分析】利用全等三角形的判定方法進行分析即可.【詳解】解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故選:D.【考點】本題考查了全等三角形的應用,熟練掌握三角形全等的判定定理是解題的關鍵.3、A【解析】【分析】由題意易得∠AOC=∠BOD,然后根據三角形全等的性質及角平分線的判定定理可進行求解.【詳解】解:∵∠AOB=∠COD=40°,∠AOD是公共角,∴∠COD+∠AOD=∠BOA+∠AOD,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∠ODB=∠OCA,故①②正確;過點O作OE⊥AC于點E,OF⊥BD于點F,BD與OA相交于點H,如圖所示:∵∠AHM=∠OHB,∠AMB=180°-∠AHM-∠OAC,∠BOA=180°-∠OHB-∠OBD,∴∠AMB=∠BOA=40°,∴∠OEC=∠OFD=90°,∵OC=OD,∠OCA=∠ODB,∴△OEC≌△OFD(AAS),∴OE=OF,∴OM平分∠BMC,故③④正確;所以正確的個數有4個;故選A.【考點】本題主要考查全等三角形的性質與判定及角平分線的判定定理,熟練掌握全等三角形的性質與判定及角平分線的判定定理是解題的關鍵.4、A【解析】【分析】根據已知條件可知△ABC≌△EDB,由全等可得到∠A=∠E,并利用三角形內角和可求得∠E,再應用外角和求得∠AFE.【詳解】∵BD=BC,BE=CA,∠DBE=∠C,∴△ABC≌△EDB(SAS),∴∠A=∠E,∵∠DBE=62°,∠BDE=75°,∴∠E=180°﹣60°﹣75°=43°,∴∠A=43°,∵∠BDE+∠ADE=180°,∴∠ADE=105°,∴∠AFE=∠ADE+∠A=105°+43°=148°.故選:A.【考點】本題考查了全等三角形的判定和性質、三角形外角和、內角和定理,難度不大,但要注意數形結合思想的運用.5、D【解析】【分析】根據ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數的知識進行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【考點】本題考查了線段垂直平分線的性質,三角形內角和定理,含30度角的直角三角形的性質,余弦等,結合圖形熟練應用相關的性質及定理是解題的關鍵.二、填空題1、5【解析】【分析】作GM⊥AB于M,先利用基本作圖得到AG平分∠BAC,再根據角平分線的性質得到GM=GH=2,然后根據三角形面積公式計算.【詳解】解:作GM⊥AB于M,由作法得AG平分∠BAC,而GH⊥AC,GM⊥AB,∴GM=GH=2,∴,故答案為:5.【考點】此題考查了角平分線的性質定理:角平分線上的點到這個角的兩邊的距離相等,還考查了角平分線的作圖方法,正確理解題意得到AG平分∠BAC是解題的關鍵.2、3<m<13【解析】【分析】延長AD至E,使DE=AD=4,連接CE,利用SAS證明△ABD≌△ECD,可得CE=AB,再根據三角形的三邊的關系即可解決問題.【詳解】解:如圖,延長AD至E,使DE=AD=4,連接CE,∵AD是BC邊上的中線,∴BD=CD,在△ADB和△CDE中,,∴△ABD≌△ECD(SAS),∴CE=AB,在△ACE中,AE-CE<AC<AE+CE,∵CE=AB=5,AE=8,∴8-5<AC<8+5,∴3<AC<13,∴3<m<13.故答案為:3<m<13.【考點】此題考查了全等三角形的性質與判定,三角形的三邊的關系,解題的關鍵是利用已知條件構造全等三角形,然后利用三角形的三邊的關系解決問題.3、4.【解析】【分析】過點D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對的直角邊等于斜邊的一半可求出DF的長,此題得解.【詳解】過點D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案為4.【考點】本題考查了角平分線的性質、三角形內角和定理以及含30度角的直角三角形,利用角平分線的性質及30°角所對的直角邊等于斜邊的一半,求出DF的長是解題的關鍵.4、65°或65度【解析】【分析】根據作圖先得出OC平分∠AOB,根據,得出,根據為的外角,得出,即可求出,根據,得出,即可求解.【詳解】解:根據作圖可知,OC平分∠AOB,∴,∵,,,為的外角,,,,,.故答案為:.【考點】本題主要考查了角平分線的基本作圖,平行線的性質,三角形外角的性質,直角三角形的性質,根據題意求出是解題的關鍵.5、27【解析】【分析】由作圖步驟可知BG為∠ABC的角平分線,過G作GH⊥BC,GM⊥AB,可得GM=GH,然后再結合已知條件和三角形的面積公式求得GH,最后運用三角形的面積公式解答即可.【詳解】解:由作圖作法可知:BG為∠ABC的角平分線過G作GH⊥BC,GM⊥AB∴GM=GH∴,故答案為27.【考點】本題考查了角平分線定理和三角形面積公式的應用,通過作法發(fā)現(xiàn)角平分線并靈活應用角平分線定理是解答本題的關鍵.三、解答題1、(1)證明見詳解(2)DE+BE=AD.理由見詳解(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等).理由見詳解.【解析】【分析】(1)根據題意由垂直得∠ADC=∠BEC=90°,由同角的余角相等得:∠DAC=∠BCE,因此根據AAS可以證明△ADC≌△CEB,結合全等三角形的對應邊相等證得結論;(2)由題意根據全等三角形的判定定理AAS推知△ACD≌△CBE,然后由全等三角形的對應邊相等、圖形中線段間的和差關系以及等量代換證得DE+BE=AD;(3)由題意可知DE、AD、BE具有的等量關系為:DE=BE-AD(或AD=BE-DE,BE=AD+DE等).證明的方法與(2)相同.(1)證明:如圖1,∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,∵,∴△ADC≌△CEB;∴DC=BE,AD=EC,∵DE=DC+EC,∴DE=BE+AD.(2)解:DE+BE=AD.理由如下:如圖2,∵∠ACB=90°,∴∠ACD+∠BCE=90°.又∵AD⊥MN于點D,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE.在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE,AD=CE,∴DE+BE=DE+CD=EC=AD,即DE+BE=AD.(3)解:DE=BE-AD(或AD=BE-DE,BE=AD+DE等).理由如下:如圖3,易證得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD-CE=BE-AD,即DE=BE-AD.【考點】本題屬于幾何變換綜合題,考查等腰直角三角形和全等三角形的性質和判定,熟練掌握全等三角形的四種判定方法是關鍵:SSS、SAS、AAS、ASA;在證明線段的和與差時,利用全等三角形將線段轉化到同一條直線上得出結論.2、見解析.【解析】【分析】首先由已知證明Rt△BAN≌Rt△CAM,得到∠ABN=∠ACM,BN=CM,再根據ASA證明△ABD≌△ACE,得到BD=CE,由此可得CE-CM=BD-BN,即EM=DN.【詳解】證明:在Rt△BAN和Rt△CAM中,,所以Rt△BAN≌Rt△CAM(HL),∴∠ABN=∠ACM,BN=CM,在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),∴BD=CE,∴CE-CM=BD-BN,即EM=DN.【考點】本題主要考查了三角形全等的判定和性質,熟練掌握判定定理和性質定理并能靈活運用是解題關鍵.3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論