重難點解析北師大版9年級數學上冊期中試題帶答案詳解(培優(yōu)B卷)_第1頁
重難點解析北師大版9年級數學上冊期中試題帶答案詳解(培優(yōu)B卷)_第2頁
重難點解析北師大版9年級數學上冊期中試題帶答案詳解(培優(yōu)B卷)_第3頁
重難點解析北師大版9年級數學上冊期中試題帶答案詳解(培優(yōu)B卷)_第4頁
重難點解析北師大版9年級數學上冊期中試題帶答案詳解(培優(yōu)B卷)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北師大版9年級數學上冊期中試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在正方形ABCD中,點O是對角線AC的中點,點E是邊BC上的一個動點,OE⊥OF,交邊AB于點F,點G,H分別是點E,F關于直線AC的對稱點,點E從點C運動到點B時,圖中陰影部分面積的大小變化是()A.先增大后減小 B.先減小后增大C.一直不變 D.不確定2、如圖,在矩形中,,,是矩形的對稱中心,點、分別在邊、上,連接、,若,則的值為(

)A. B. C. D.3、若一元二次方程的兩根為,,則的值是(

)A.4 B.2 C.1 D.﹣24、若關于x的一元二次方程有實數根,則字母k的取值范圍是(

)A. B.且 C. D.且5、關于的一元二次方程的兩根應為(

)A. B., C. D.6、關于x的方程x2+4kx+2k2=4的一個解是﹣2,則k值為(

)A.2或4 B.0或4 C.﹣2或0 D.﹣2或27、如圖,在平面直角坐標系中、四邊形OABC為菱形,O為原點,A點坐標為(8,0),∠AOC=60°,則對角線交點E的坐標為(

)A.(4,2) B.(2,4) C.(2,6) D.(6,2)二、多選題(3小題,每小題2分,共計6分)1、等腰三角形三邊長分別為a,b,3,且a,b是關于x的一元二次方程x2﹣8x﹣1+m=0的兩根,則m的值為()A.15 B.16 C.17 D.182、平行四邊形ABCD的對角線相交于點O,分別添加下列條件使得四邊形ABCD是矩形的條件有(

)是菱形的條件有(

)A.∠ABC=90° B.AC⊥BD C.AB=BC D.AC平分∠BAD E.AO=DO3、如圖,四邊形ABCD的對角線互相平分,要使它成為矩形,不能添加的條件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、已知關于x的一元二次方程mx2+5x+m2﹣2m=0有一個根為0,則m=_____.2、如圖,點E是菱形ABCD邊AB的中點,點F為邊AD上一動點,連接EF,將△AEF沿直線EF折疊得到△A'EF,連接A'D,A'C.已知BC=4,∠B=120°,當△A'CD為直角三角形時,線段AF的長為______.3、如圖,直角三角形ABC中,AC=1,BC=2,P為斜邊AB上一動點.PE⊥BC,PF⊥CA,則線段EF長的最小值為_________.4、關于的方程,k=_____時,方程有實數根.5、中國“一帶一路”倡議給沿線國家?guī)砗艽蟮慕洕б妫粞鼐€某地區(qū)居民2017年人均收入300美元,預計2019年人均收入將達到432美元,則2017年到2019年該地區(qū)居民年人均收入增長率為______________.6、關于的方程有兩個不相等的實數根,那么的取值范圍是__________.7、已知一元二次方程ax2+bx+c=0(a≠0),下列結論:①若方程兩根為-1和2,則2a+c=0;②若b>a+c,則方程有兩個不相等的實數根;③若b=2a+3c,則方程有兩個不相等的實數根;④若m是方程的一個根,則一定有b2-4ac=(2am+b)2成立.其中結論正確的序號是__________.8、如圖,在菱形ABCD中,AB的垂直平分線交對角線BD于點F,垂足為點E,連接AF、AC,若∠DCB=70°,則∠FAC=______.9、為增強學生身體素質,提高學生足球運動競技水平,我市開展“市長杯”足球比賽,賽制為單循環(huán)形式(每兩隊之間賽一場).現計劃安排21場比賽,應邀請多少個球隊參賽?設邀請x個球隊參賽,根據題意,可列方程為_____.10、關于的一元二次方程的一個根是2,則另一個根是__________.四、解答題(6小題,每小題10分,共計60分)1、如圖,在平面直角坐標系中,點是坐標原點,四邊形是菱形,點的坐標為,點在軸的正半軸上,直線交軸于點,邊交軸于點,連接.(1)填空:菱形的邊長_________;(2)求直線的解析式;(3)動點從點出發(fā),沿折線方向以3個單位/秒的速度向終點勻速運動,設的面積為,點的運動時間為秒,①當時,求與之間的函數關系式;②在點運動過程中,當,請直接寫出的值.2、如圖,BF平行于正方形ADCD的對角線AC,點E在BF上,且AE=AC,CF∥AE,求∠BCF.3、(1)解方程:.(2)解方程:.4、已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.(1)求證:AB=AF;(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結論.5、在水果銷售旺季,某水果店購進一優(yōu)質水果,進價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據銷售情況,發(fā)現該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數關系.銷售量y(千克)…34.83229.628…售價x(元/千克)…22.62425.226…(1)某天這種水果的售價為23.5元/千克,求當天該水果的銷售量.(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?6、如圖1,正方形ABCD中,AB=5,點E為BC邊上一動點,連接AE,以AE為邊,在線段AE右側作正方形,連接CF、DF.設.(當點E與點B重合時,x的值為0),.小明根據學習函數的經驗,對函數隨自變量x的變化而變化的規(guī)律進行了探究.下面是小明的探究過程,請補充完整:(1)通過取點、畫圖、測量、觀察、計算,得到了x與y1、y2的幾組對應值;x0123455.004.123.614.125.0001.412.834.245.657.07(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數值所對應的點,并畫出函數y1,y2的圖象;(3)結合函數圖象2,解決問題:當△CDF為等腰三角形時,BE的長度約為cm.-參考答案-一、單選題1、C【解析】【分析】連接BD,證明△FOB≌△EOC,同理得到△HOD≌△GOC,即可得到答案.【詳解】解:連接BD,∵四邊形ABCD是正方形,∴∠BOC=90°,,∴∠BOЕ+∠EOC=90°,∵OE⊥OF,∴∠BOE+∠FOB=90°,∴∠FOB=∠EOC,在△FOB和△EOC,,∴△FOB≌△EOC,同理,△HOD≌△GOC,∴圖中陰影部分的面積=△ABD的面積=正方形ABCD的面積.∴陰影部分面積的大小一直不變.故選:C.【考點】本題考查的是正方形的性質、全等三角形的判定和性質,掌握正方形的性質、全等三角形的判定定理和性質定理是解題的關鍵.2、D【解析】【分析】連接AC,BD,過點O作于點,交于點,利用勾股定理求得的長即可解題.【詳解】解:如圖,連接AC,BD,過點O作于點,交于點,四邊形ABCD是矩形,同理可得故選:D.【考點】本題考查中心對稱、矩形的性質、勾股定理等知識,學會添加輔助線,構造直角三角形是解題關鍵.3、A【解析】【分析】根據一元二次方程根與系數的關系即可求解.【詳解】根據題意得,,所以.故選A.【考點】此題主要考查根與系數的關系,解題的關鍵是熟知根與系數的性質.4、D【解析】【分析】利用一元二次方程的定義和根的判別式的意義得到k≠0且△=(-2)2-4k×(-3)≥0,然后求出兩不等式的公共部分即可.【詳解】解:根據題意得k≠0且△=(-2)2-4k×(-3)≥0,解得且k≠0.故選:D.【考點】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0時,方程有兩個不相等的實數根;當△=0時,方程有兩個相等的實數根;當△<0時,方程無實數根.也考查了一元二次方程的定義.5、B【解析】【分析】先把方程化為一般式,再計算判別式的值,然后利用求根公式解方程即可.【詳解】x2?3ax+a2=0,△=(?3a)2?4××a2=a2,x=.所以x1=a,x2=a.故答案選B.【考點】本題考查了解一元二次方程,解題的關鍵是根據公式法解一元二次方程.6、B【解析】【分析】把x=-2代入方程即可求得k的值;【詳解】解:將x=-2代入原方程得到:,解關于k的一元二次方程得:k=0或4,故選:B.【考點】此題主要考查了解一元二次方程相關知識點,代入解求值是關鍵.7、D【解析】【分析】過點E作EF⊥x軸于點F,由直角三角形的性質求出EF長和OF長即可.【詳解】解:過點E作EF⊥x軸于點F,∵四邊形OABC為菱形,∠AOC=60°,∴∠AOE=∠AOC=30°,OB⊥AC,∠FAE=60°,∴∠AEF=30°∵A(8,0),∴AO=8,∴AE=AO=×8=4,∴AF=AE=2,,∴OF=AO?AF=8?2=6,∴.故選:D【考點】本題考查了菱形的性質、勾股定理及含30°直角三角形的性質,正確作出輔助線是解題的關鍵.二、多選題1、BC【解析】【分析】分3為底邊長或腰長兩種情況考慮:當3為底時,由a=b及a+b=8即可求出a、b的值,利用三角形的三邊關系確定此種情況存在,再利用根與系數的關系即可求得的值;當3為腰時,則a、b中有一個為3,a+b=8即可求出b,再利用根與系數的關系即可求得的值.【詳解】解:當3為腰時,此時a=3或b=3,把x=3代入方程x2﹣8x﹣1+m=0得9﹣24﹣1+m=0,解得m=16,此時方程為x2﹣8x+15=0,解得x1=3,x2=5;當3為底時,此時a=b,Δ=82﹣4(﹣1+m)=0,解得m=17,此時方程為x2﹣8x+16=0,解得x1=x2=4;綜上所述,m的值為16或17.故答案為:BC.【考點】本題考查了一元二次方程根與系數的關系,等腰三角形的定義,分3為底邊長或腰長兩種情況討論是解題的關鍵.2、AEBCD【解析】【分析】因為四邊形ABCD是平行四邊形,要成為矩形加上一個角為直角或對角線相等即可;要使其成為菱形,加上一組鄰邊相等或對角線垂直均可.【詳解】A選項:∵∠ABC=90°,四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形.(有一個角是直角的平行四邊形是矩形)B選項:∵AC⊥BD,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(對角線互相垂直的平行四邊形是菱形)C選項:∵AB=BC,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(鄰邊相等的平行四邊形是菱形)D選項:如圖:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=BC,∴?ABCD是菱形;E選項:∵AO=DO,四邊形ABCD是平行四邊形,∴AC=BD,∴四邊形ABCD是矩形.(對角線互相平分且相等的平行四邊形是矩形)故選:AE,BCD.【考點】考查了菱形和矩形的判定,解題關鍵是掌握平行四邊形的性質和菱形、矩形的判定方法.3、ABC【解析】【分析】根據題意可得四邊形ABCD是平行四邊形,然后利用矩形的判定定理,即可求解.【詳解】解:∵四邊形ABCD的對角線互相平分,∴四邊形ABCD是平行四邊形,∴AB=CD,AD∥BC,故A、B符合題意;若AB=BC,可得到四邊形ABCD是菱形,故C符合題意;若AC=BD,可得到四邊形ABCD是矩形,故D不符合題意;故選ABC.【考點】本題主要考查了矩形的判定,平行四邊形的性質與判定熟練掌握矩形的判定定理是解題的關鍵.三、填空題1、2【解析】【詳解】【分析】根據一元二次方程的定義以及一元二次方程的解的定義列出關于m的方程,通過解關于m的方程求得m的值即可.【詳解】∵關于x的一元二次方程mx2+5x+m2﹣2m=0有一個根為0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的解的定義.解答該題時需注意二次項系數a≠0這一條件.2、2或【解析】【分析】分當時和當時兩種情況討論求解即可.【詳解】解:如圖1所示,當時,取CD中點H,連接,∴,∵四邊形ABCD是菱形,E為AB中點,∴,∠A=180°-∠B=60°,,由折疊的性質可知,,∴,連接EH,∵,∴四邊形AEHD是平行四邊形,∴,,∵由三角形三邊的關系可知,當點不在線段EH上時,必有,這與矛盾,∴E、、H三點共線,∴,∴△AEF為等邊三角形,∴;如圖2所示,當時,連接BD,ED,過點F作FG⊥AB于G,∵∠ABC=120°,四邊形ABCD是菱形,∴AB=AD,∠A=60°,∴△ABD是等邊三角形,∵E是AB中點,∴DE⊥AB,∴∠ADE=30°,∴∠EDC=90°,∴此時三點共線,由翻折的性質可得,∵FG⊥AE,∠A=60°,∠AEF=45°,∴∠AFG=30°,∠GFE=45°,∴AF=2AG,EG=FG,∴,∵,∴,∴,故答案為:2或.【考點】本題主要考查了菱形的性質,等邊三角形的性質與判定,折疊的性質,三角形三邊的關系,含30度角的直角三角形的性質,平行四邊形的性質與判定,直角三角形斜邊上的中線等等,利用分類討論的思想求解是解題的關鍵.3、.【解析】【分析】先連接PC,判定四邊形ECFP是矩形,得到EF=PC,再根據當PC最小時,EF也最小,根據垂線段最短,可得當CP⊥AB時,PC最小,最后根據面積法,求得CP的長即可得到線段EF長的最小值.【詳解】解:連接PC,∵PE⊥BC,PF⊥CA,∴∠PEC=∠PFC=∠C=90°,∴四邊形ECFP是矩形,∴EF=PC,∴當PC最小時,EF也最小,∵垂線段最短,∴當CP⊥AB時,PC最小,∵AC=1,BC=2,∴AB=,又∵當CP⊥AB時,×AC×BC=×AB×CP,∴.∴線段EF長的最小值為.故答案為:.【考點】本題主要考查了矩形的判定與性質,勾股定理以及垂線段最短的綜合應用,解決問題的關鍵是運用矩形對角線相等的性質進行求解.4、【解析】【分析】由于最高次項前面的系數不確定,所以進行分類討論:①當時,直接進行求解;②當時,方程為一元二次方程,利用根的判別式,確定k的取值范圍,最后綜合①②即可求出滿足題意的k的取值范圍.【詳解】解:①當時,方程化為:,解得:,符合題意;②當時,∵方程有實數根,∴,即,解得:,∴且;綜上所述,當時,方程有實數根,故答案為:.【考點】題目主要考查方程的解的情況,包括一元一次方程及一元二次方程的求解,分情況討論方程的解是解題關鍵.5、20【解析】【分析】設該地區(qū)人均收入增長率為x,根據2017年人均收入300美元,預計2019年人均收入將達到432美元,可列方程求解.【詳解】解:設該地區(qū)人均收入增長率為x,則300×(1+x)2=432,∴(1+x)2=1.44,解得x=0.2(x=-2.2舍),∴該地區(qū)人均收入增長率為20%.故本題答案應為:20%.【考點】一元二次方程在實際生活中的應用是本題的考點,根據題意列出方程是解題的關鍵.6、且【解析】【詳解】分析:根據一元二次方程的定義以及根的判別式的意義可得△=4-12m>0且m≠0,求出m的取值范圍即可.詳解:∵一元二次方程mx2-2x+3=0有兩個不相等的實數根,∴△>0且m≠0,∴4-12m>0且m≠0,∴m<且m≠0,故答案為m<且m≠0.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數)根的判別式△=b2-4ac.當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.也考查了一元二次方程的定義.7、①③④【解析】【分析】利用根與系數的關系判斷①;由Δ=b2-4ac判斷②;由判別式可判斷③;將x=m代入方程得am2=-(bm+c),再代入=(2am+b)2變形可判斷④.【詳解】解:若方程兩根為-1和2,則=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正確;由b>a+c不能判斷Δ=b2-4ac值的大小情況,故②錯誤;若b=2a+3c,則Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有兩個不相等的實數根,故③正確.若m是方程ax2+bx+c=0的一個根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正確;故答案為:①③④.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數的關系及根的判別式Δ=b2-4ac:當Δ>0,方程有兩個不相等的實數根;當Δ=0,方程有兩個相等的實數根;當Δ<0,方程沒有實數根.8、20°【解析】【分析】由菱形的性質和等腰三角形的性質求出∠BAC和∠FAB的度數,即可解決問題.【詳解】解:∵EF是線段AB的垂直平分線,∴AF=BF,∴∠FAB=∠FBA,∵四邊形ABCD是菱形,∠DCB=70°,∴BC=AB,∠BCA=∠DCB=35°,AC⊥BD,∴∠BAC=∠BCA=35°,∴∠FBA=90°﹣∠BAC=55°,∴∠FAB=55°,∴∠FAC=∠FAB﹣∠BAC=55°﹣35°=20°,故答案為:20°.【考點】本題考查菱形的性質和等腰三角形的性質,熟練掌握菱形的性質和等腰三角形的性質是解題的關鍵.9、x(x﹣1)=21【解析】【分析】賽制為單循環(huán)形式(每兩隊之間都賽一場),x個球隊比賽總場數為x(x﹣1),即可列方程.【詳解】有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:x(x﹣1)=21,故答案為x(x﹣1)=21.【考點】本題考查了一元二次方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.10、-3【解析】【分析】由題意可把x=2代入一元二次方程進行求解a的值,然后再進行求解方程的另一個根.【詳解】解:由題意把x=2代入一元二次方程得:,解得:,∴原方程為,解方程得:,∴方程的另一個根為-3;故答案為-3.【考點】本題主要考查一元二次方程的解及其解法,熟練掌握一元二次方程的解及其解法是解題的關鍵.四、解答題1、(1)5(2)(3)①;②或【解析】【分析】(1)在Rt△AOH中利用勾股定理即可求得菱形的邊長;(2)根據(1)即可求的OC的長,則C的坐標即可求得,利用待定系數法即可求得直線AC的解析式;(3)①根據S△ABC=S△AMB+SBMC求得M到直線BC的距離為h,然后分成P在AB上和在BC上兩種情況討論,利用三角形的面積公式求解.②將S=2代入①中的函數解析式求得相應的t的值.(1)解:點的坐標為,在Rt△AOH中,故答案為:5;(2)∵四邊形ABCO是菱形,∴OC=OA=AB=5,即C(5,0).設直線AC的解析式y(tǒng)=kx+b,函數圖像過點A、C,得,解得,直線AC的解析式為,(3)由,令,,則,則,①當0<t<時,BP=BA-AP=5-3t,HM=OH-OM=,,,②設M到直線BC的距離為h,S△ABC=S△AMB+SBMC,,解得,當時,,,,當時,代入,解得,代入,解得,綜上所述或.【考點】本題考查一次函數綜合題、待定系數法、勾股定理、三角形的面積、一元一次方程等知識,解題的關鍵是熟練掌握待定系數法確定函數解析式,學會用分類討論的思想思考問題,學會構建方程解決問題.2、105°【解析】【分析】首先過點A作AO⊥FB的延長線于點O,連接BD,交AC于點Q,易得四邊形AOBQ是正方形,四邊形ACFE是菱形,Rt△AOE中,AE=2AO,即可求得∠AEO=30°,繼而求得答案.【詳解】作AO⊥FB的延長線,BQ⊥AC∵BF∥AC,∴AO∥BQ且∠QAB=∠QBA=45°∴AO=BQ=AQ=AC∵AE=AC

∴AO=AE∴∠AEO=30°∵BF∥AC

∴∠CAE∠AEO=30°∵BF∥AC,CF∥AE

∴∠CFE∠CAE=30°∵BF∥AC

∴∠CBF∠BCA=45°∠BCF=180°-∠CBF-∠CFE=180°-45°-30°=105°【考點】本題考了正方形的性質、平行四邊形的判定與性質以及含30°的直角三角形的性質,解題關鍵是注意掌握輔助線的作法,注意掌握數形結合思想的應用.3、(1),;(2),【解析】【分析】(1)依據平方根的定義求解即可;(2)利用公式法求解即可.【詳解】(1)兩邊直接開平方,得:,或,解得:,;(2),,,,則,,.【考點】本題考查了直接開平方法、公式法解一元二次方程.對于解方程方法的選擇,應該根據方程的特點靈活的選擇解方程的方法.4、(1)證明見解析;(2)結論:四邊形ACDF是矩形.理由見解析【解析】【分析】(1)只要證明AB=CD,AF=CD即可解決問題;(2)結論:四邊形ACDF是矩形.根據對角線相等的平行四邊形是矩形判斷即可;【詳解】解:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論