中考數(shù)學(xué)總復(fù)習(xí)《 圓》常考點(diǎn)試卷附完整答案詳解【奪冠】_第1頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》??键c(diǎn)試卷附完整答案詳解【奪冠】_第2頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》??键c(diǎn)試卷附完整答案詳解【奪冠】_第3頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》常考點(diǎn)試卷附完整答案詳解【奪冠】_第4頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》??键c(diǎn)試卷附完整答案詳解【奪冠】_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

中考數(shù)學(xué)總復(fù)習(xí)《圓》常考點(diǎn)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,已知長(zhǎng)方形中,,圓B的半徑為1,圓A與圓B內(nèi)切,則點(diǎn)與圓A的位置關(guān)系是(

)A.點(diǎn)C在圓A外,點(diǎn)D在圓A內(nèi) B.點(diǎn)C在圓A外,點(diǎn)D在圓A外C.點(diǎn)C在圓A上,點(diǎn)D在圓A內(nèi) D.點(diǎn)C在圓A內(nèi),點(diǎn)D在圓A外2、如圖,已知中,,,,如果以點(diǎn)為圓心的圓與斜邊有公共點(diǎn),那么⊙的半徑的取值范圍是(

)A. B. C. D.3、如圖1,一個(gè)扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A.6π﹣ B.6π﹣9 C.12π﹣ D.4、一個(gè)點(diǎn)到圓的最大距離為11cm,最小距離為5cm,則圓的半徑為(

)A.16cm或6cm B.3cm或8cm C.3cm D.8cm5、如圖,圓內(nèi)接正六邊形的邊長(zhǎng)為4,以其各邊為直徑作半圓,則圖中陰影部分的面積為(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在中,,,,將繞順時(shí)針旋轉(zhuǎn)后得,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得線段,分別以,為圓心,、長(zhǎng)為半徑畫(huà)弧和弧,連接,則圖中陰影部分面積是________.2、如圖,在四邊形中,.若,則的內(nèi)切圓面積________(結(jié)果保留).3、如圖,四邊形ABCD為⊙O的內(nèi)接正四邊形,△AEF為⊙O的內(nèi)接正三角形,連接DF.若DF恰好是同圓的一個(gè)內(nèi)接正多邊形的一邊,則這個(gè)正多邊形的邊數(shù)為_(kāi)____.4、如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.5、已知直線m與半徑為5cm的⊙O相切于點(diǎn)P,AB是⊙O的一條弦,且,若AB=6cm,則直線m與弦AB之間的距離為_(kāi)____.三、解答題(5小題,每小題10分,共計(jì)50分)1、已知圓弧的半徑為15厘米,圓弧的長(zhǎng)度為,求圓心角的度數(shù).2、如圖,為⊙的直徑,過(guò)圓上一點(diǎn)作⊙的切線交的延長(zhǎng)線與點(diǎn),過(guò)點(diǎn)作交于點(diǎn),連接.(1)直線與⊙相切嗎?并說(shuō)明理由;(2)若,,求的長(zhǎng).3、在中,,,,已知⊙O經(jīng)過(guò)點(diǎn)C,且與相切于點(diǎn)D.(1)在圖中作出⊙O;(要求:尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡)(2)若點(diǎn)D是邊上的動(dòng)點(diǎn),設(shè)⊙O與邊、分別相交于點(diǎn)E、F,求的最小值.4、如圖,已知點(diǎn)在上,點(diǎn)在外,求作一個(gè)圓,使它經(jīng)過(guò)點(diǎn),并且與相切于點(diǎn).(要求寫(xiě)出作法,不要求證明)5、如圖,一根長(zhǎng)的繩子,一端拴在柱子上,另一端拴著一只羊(羊只能在草地上活動(dòng)),請(qǐng)畫(huà)出羊的活動(dòng)區(qū)域.-參考答案-一、單選題1、C【解析】【分析】根據(jù)內(nèi)切得出圓A的半徑,再判斷點(diǎn)D、點(diǎn)E到圓心的距離即可【詳解】∵圓A與圓B內(nèi)切,,圓B的半徑為1∴圓A的半徑為5∵<5∴點(diǎn)D在圓A內(nèi)在Rt△ABC中,∴點(diǎn)C在圓A上故選:C【考點(diǎn)】本題考查點(diǎn)與圓的位置關(guān)系、圓與圓的位置關(guān)系、勾股定理,熟練掌握點(diǎn)與圓的位置關(guān)系是關(guān)鍵2、C【解析】【分析】作CD⊥AB于D,根據(jù)勾股定理計(jì)算出AB=13,再利用面積法計(jì)算出然后根據(jù)直線與圓的位置關(guān)系得到當(dāng)時(shí),以C為圓心、r為半徑作的圓與斜邊AB有公共點(diǎn).【詳解】解:作CD⊥AB于D,如圖,∵∠C=90°,AC=3,BC=4,∴∴∴以C為圓心、r為半徑作的圓與斜邊AB有公共點(diǎn)時(shí),r的取值范圍為故選:C【考點(diǎn)】本題考查了直線與圓的位置關(guān)系:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d:直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.3、A【解析】【分析】連接OD,如圖,利用折疊性質(zhì)得由弧AD、線段AC和CD所圍成的圖形的面積等于陰影部分的面積,AC=OC,則OD=2OC=6,CD=3,從而得到∠CDO=30°,∠COD=60°,然后根據(jù)扇形面積公式,利用由弧AD、線段AC和CD所圍成的圖形的面積=S扇形AOD-S△COD,進(jìn)行計(jì)算即可.【詳解】解:連接OD,如圖,∵扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,∴AC=OC,∴OD=2OC=6,∴CD=,∴∠CDO=30°,∠COD=60°,∴由弧AD、線段AC和CD所圍成的圖形的面積=S扇形AOD﹣S△COD=﹣=6π﹣,∴陰影部分的面積為6π﹣.故選A.【考點(diǎn)】本題考查了扇形面積的計(jì)算:陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.記住扇形面積的計(jì)算公式.也考查了折疊性質(zhì).4、B【解析】【分析】最大距離與最小距離的和是直徑;當(dāng)點(diǎn)P在圓外時(shí),點(diǎn)到圓的最大距離與最小距離的差是直徑,由此得解.【詳解】當(dāng)點(diǎn)P在圓內(nèi)時(shí),最近點(diǎn)的距離為5cm,最遠(yuǎn)點(diǎn)的距離為11cm,則直徑是16cm,因而半徑是8cm;當(dāng)點(diǎn)P在圓外時(shí),最近點(diǎn)的距離為5cm,最遠(yuǎn)點(diǎn)的距離為11cm,則直徑是6cm,因而半徑是3cm;故選B.【考點(diǎn)】本題考查了點(diǎn)與圓的位置關(guān)系,利用線段的和差得出直徑是解題關(guān)鍵,分類討論,以防遺漏.5、A【解析】【分析】正六邊形的面積加上六個(gè)小半圓的面積,再減去中間大圓的面積即可得到結(jié)果.【詳解】解:正六邊形的面積為:,六個(gè)小半圓的面積為:,中間大圓的面積為:,所以陰影部分的面積為:,故選:A.【考點(diǎn)】本題考查了正多邊形與圓,圓的面積的計(jì)算,正六邊形的面積的計(jì)算,正確的識(shí)別圖形是解題的關(guān)鍵.二、填空題1、【解析】【分析】作DH⊥AE于H,根據(jù)勾股定理求出AB,根據(jù)陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積計(jì)算即可得到答案.【詳解】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴,由旋轉(zhuǎn)得△EOF≌△BOA,∴∠OAB=∠EFO,∵∠FEO+∠EFO=∠FEO+∠HED=90°,∴∠EFO=∠HED,∴∠HED=∠OAB,∵∠DHE=∠AOB=90°,,∴△DHE≌△BOA(AAS),∴DH=OB=1,,∴陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積,故答案為:.【考點(diǎn)】本題考查的是扇形面積的計(jì)算、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì),掌握扇形的面積公式和旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.2、【解析】【分析】根據(jù),得出為的垂直平分線;利用等腰三角形的三線合一可得,進(jìn)而得出為等邊三角形;利用,得出為直角三角形,解直角三角形,求得等邊三角形的邊長(zhǎng),再利用內(nèi)心的性質(zhì)求出圓的半徑,圓的面積可求.【詳解】解:如圖,設(shè)與交于點(diǎn)F,的內(nèi)心為O,連接.∵,∴是線段的垂直平分線.∴.∵,∴.∴.∴為等邊三角形.∴.∵,∴.∵,∴∴.∴.∵,∴.∵O為的內(nèi)心,∴.∴.∴的內(nèi)切圓面積為.故答案為.【考點(diǎn)】本題考查了垂直平分線的判定、三角形內(nèi)切圓、等邊三角形判定與性質(zhì)、解直角三角形,解題關(guān)鍵是根據(jù)垂直平分線的判定確定為等邊三角形,根據(jù)解直角三角形求出內(nèi)切圓半徑.3、12【解析】【分析】連接OA、OD、OF,如圖,利用正多邊形與圓,分別計(jì)算⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的中心角得到∠AOD=90°,∠AOF=120°,則∠DOF=30°,然后計(jì)算即可得到n的值.【詳解】解:連接OA、OD、OF,如圖,設(shè)這個(gè)正多邊形為n邊形,∵AD,AF分別為⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的一邊,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圓內(nèi)接一個(gè)正十二邊形的一邊.故答案為:12.【考點(diǎn)】本題考查了正多邊形與圓:把一個(gè)圓分成n(n是大于2的自然數(shù))等份,依次連接各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正多邊形,這個(gè)圓叫做這個(gè)正多邊形的外接圓;熟練掌握正多邊形的有關(guān)概念.4、6【解析】【分析】作直徑CD,如圖,連接BD,根據(jù)圓周角定理得到∠CBD=90°,∠D=60°,然后利用含30度的直角三角形三邊的關(guān)系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×6=6,∴CD=2BD=12,∴OC=6,即⊙O的半徑是6.故答案為6.【考點(diǎn)】本題主要考查圓周角的性質(zhì),解決本題的關(guān)鍵是要熟練掌握?qǐng)A周角的性質(zhì).5、1cm或9cm【解析】【分析】根據(jù)題意:分兩種情況進(jìn)行分析,①當(dāng)AB與直線位于圓心O的同側(cè)時(shí),連接OA,OP交AB于點(diǎn)E;②當(dāng)AB與直線m位于圓心O的異側(cè)時(shí),連接OA’,OP交于點(diǎn)F;結(jié)合圖形利用圓的基本性質(zhì)及勾股定理進(jìn)行求解即可得出結(jié)果.【詳解】解:根據(jù)題意:分兩種情況進(jìn)行分析,①如圖所示,當(dāng)AB與直線位于圓心O的同側(cè)時(shí),連接OA,OP交AB于點(diǎn)E,∵,,∴,,∵直線m為圓O的切線,∴,在中,,∴,②如圖所示,當(dāng)AB與直線m位于圓心O的異側(cè)時(shí),連接OA’,OP交于點(diǎn)F,結(jié)合圖形及①可得,∴PF=PO+OF=5+4=9cm,故答案為:或.【考點(diǎn)】題目主要考查圓的基本性質(zhì)及勾股定理解直角三角形,理解題意,作出相應(yīng)圖形進(jìn)行求解是解題關(guān)鍵.三、解答題1、【解析】【分析】根據(jù)弧長(zhǎng)的計(jì)算公式計(jì)算即可.【詳解】解:圓心角的度數(shù).【考點(diǎn)】本題考查弧長(zhǎng)的計(jì)算,掌握弧長(zhǎng)公式是解題的關(guān)鍵.2、(1)相切,見(jiàn)解析(2)【解析】【分析】(1)先證得:,再證,得到,即可求出答案;(2)設(shè)半徑為;則:,即可求得半徑,再在直角三角形中,利用勾股定理,求解即可.(1)證明:連接.∵為切線,∴,又∵,∴,,且,∴,在與中;∵,∴,∴,∴直線與相切.(2)設(shè)半徑為;則:,得;在直角三角形中,,,解得【考點(diǎn)】本題主要考查與圓相關(guān)的綜合題型,涉及全等三角形的判定和性質(zhì)等知識(shí),熟練掌握平行線性質(zhì)、勾股定理及全等三角形的判定和性質(zhì)是解題的關(guān)鍵.3、(1)見(jiàn)詳解.(2)【解析】【分析】(1)連接CD,用尺規(guī)作圖,作線段CD的垂直平分線,找到線段CD的中點(diǎn)O,然后以O(shè)為圓心,為半徑主要作圓即為所作圓.(2)過(guò)點(diǎn)C作,根據(jù)點(diǎn)到直線的距離,垂線段最短可知,點(diǎn)CD為圓的直徑時(shí),此時(shí)圓的直徑最短,根據(jù)面積法可得出因?yàn)镋F也為圓的直徑,所以可得出EF最最小值為(1)如圖所示,為所作圓.(2)如圖,作于點(diǎn)D,當(dāng)CD為過(guò)的圓心點(diǎn)O時(shí),此時(shí)圓的直徑最短∴EF為的直徑,∴此時(shí)EF的長(zhǎng)為故EF的最小值為:【考點(diǎn)】本題主要考查了尺規(guī)作圖,勾股定理,三角形面積求斜邊上的高,垂線段最短等知識(shí)點(diǎn)的應(yīng)用,熟練掌握點(diǎn)到直線的距離垂線段最短這性質(zhì)定理是解此題的關(guān)鍵.4、見(jiàn)解析【解析】【分析】先確定圓心,再確定圓的半徑,畫(huà)圓即可.【詳解】解:如圖,①連接、,②作線段的垂直平分線交的延長(zhǎng)線于一點(diǎn),交點(diǎn)即為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論