版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
中考數(shù)學(xué)總復(fù)習(xí)《圓》自我提分評(píng)估考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、已知扇形的圓心角為,半徑為,則弧長(zhǎng)為(
)A. B. C. D.2、如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個(gè)圓錐的底面和側(cè)面,則圓錐的表面積為(
)A. B. C. D.3、下列說(shuō)法中,正確的是()A.長(zhǎng)度相等的弧是等弧B.平分弦的直徑垂直于弦,并且平分弦所對(duì)的兩條弧C.經(jīng)過(guò)半徑并且垂直于這條半徑的直線是圓的切線D.在同圓或等圓中90°的圓周角所對(duì)的弦是這個(gè)圓的直徑4、如圖,、為的切線,、為切點(diǎn),點(diǎn)為弧上一點(diǎn),過(guò)點(diǎn)作的切線分別交、于、,若,則的周長(zhǎng)等于(
).A. B. C. D.5、下列多邊形中,內(nèi)角和最大的是(
)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在一邊長(zhǎng)為的正六邊形中,分別以點(diǎn)A,D為圓心,長(zhǎng)為半徑,作扇形,扇形,則圖中陰影部分的面積為___________.(結(jié)果保留)2、如圖1,將一個(gè)正三角形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個(gè)正方形繞其中心最少旋轉(zhuǎn)45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個(gè)正七邊形繞其中心最少旋轉(zhuǎn)______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長(zhǎng)為,則所得正八邊形的面積為_______.3、如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內(nèi)接多邊形,則∠BOM=_______.4、如圖,拋物線的圖象與坐標(biāo)軸交于點(diǎn)、、,頂點(diǎn)為,以為直徑畫半圓交軸的正半軸于點(diǎn),圓心為,是半圓上的一動(dòng)點(diǎn),連接,是的中點(diǎn),當(dāng)沿半圓從點(diǎn)運(yùn)動(dòng)至點(diǎn)時(shí),點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng)是__________.5、圓錐形冰淇淋的母線長(zhǎng)是12cm,側(cè)面積是60πcm2,則底面圓的半徑長(zhǎng)等于_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,為的直徑,為上一點(diǎn),和過(guò)點(diǎn)的切線互相垂直,垂足為.(1)求證:平分;(2)若,,試求的半徑.2、如圖,在中,,以為直徑的⊙與交于點(diǎn),連接.(1)求證:;(2)若⊙與相切,求的度數(shù);(3)用無(wú)刻度的直尺和圓規(guī)作出劣弧的中點(diǎn).(不寫作法,保留作圖痕跡)3、如下圖是一個(gè)隧道的橫截面,它的形狀是以點(diǎn)O為圓心的圓的一部分.如果M是中弦的中點(diǎn),經(jīng)過(guò)圓心O交圓O于點(diǎn)E,并且.求的半徑.4、我們知道,與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,則三角形可以稱為圓的外切三角形.如圖1,與的三邊分別相切于點(diǎn)則叫做的外切三角形.以此類推,各邊都和圓相切的四邊形稱為圓外切四邊形.如圖2,與四邊形ABCD的邊AB,BC,CD,DA分別相切于點(diǎn)則四邊形叫做的外切四邊形.(1)如圖2,試探究圓外切四邊形的兩組對(duì)邊與之間的數(shù)量關(guān)系,猜想:(橫線上填“>”,“<”或“=”);(2)利用圖2證明你的猜想(寫出已知,求證,證明過(guò)程);(3)用文字?jǐn)⑹錾厦孀C明的結(jié)論:;(4)若圓外切四邊形的周長(zhǎng)為相鄰的三條邊的比為,求此四邊形各邊的長(zhǎng).5、如圖,AB為⊙O的直徑,C、D為⊙O上的兩個(gè)點(diǎn),==,連接AD,過(guò)點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E.(1)求證:DE是⊙O的切線.(2)若直徑AB=6,求AD的長(zhǎng).-參考答案-一、單選題1、D【解析】【分析】根據(jù)扇形的弧長(zhǎng)公式計(jì)算即可.【詳解】∵扇形的圓心角為30°,半徑為2cm,∴弧長(zhǎng)cm故答案為:D.【考點(diǎn)】本題主要考查扇形的弧長(zhǎng),熟記扇形的弧長(zhǎng)公式是解題的關(guān)鍵.2、B【解析】【分析】設(shè)圓錐的底面的半徑為rcm,則DE=2rcm,利用圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng)得到2πr,解方程求出r,然后求得直徑即可.【詳解】解:設(shè)圓錐的底面的半徑為rcm,則AE=BF=6-2r根據(jù)題意得2πr,解得r=1,側(cè)面積=,底面積=所以圓錐的表面積=,故選:B.【考點(diǎn)】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算.解題思路:解決此類問(wèn)題時(shí)要緊緊抓住兩者之間的兩個(gè)對(duì)應(yīng)關(guān)系:(1)圓錐的母線長(zhǎng)等于側(cè)面展開圖的扇形半徑;(2)圓錐的底面周長(zhǎng)等于側(cè)面展開圖的扇形弧長(zhǎng).正確對(duì)這兩個(gè)關(guān)系的記憶是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)切線的判定,圓的知識(shí),可得答案.【詳解】解:A、在等圓或同圓中,長(zhǎng)度相等的弧是等弧,故A錯(cuò)誤;B、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧,故B錯(cuò)誤;C、經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線,故C錯(cuò)誤;D、在同圓或等圓中90°的圓周角所對(duì)的弦是這個(gè)圓的直徑,故D正確;故選D.【考點(diǎn)】本題考查了切線的判定及圓的知識(shí),利用圓的知識(shí)及切線的判定是解題關(guān)鍵.4、B【解析】【分析】由切線長(zhǎng)定理可得,然后根據(jù)線段之間的轉(zhuǎn)化即可求得的周長(zhǎng).【詳解】∵、為的切線,所以,又∵為的切線,∴,∴的周長(zhǎng).故選:B.【考點(diǎn)】此題考查了圓中切線長(zhǎng)定理的運(yùn)用,解題的關(guān)鍵是熟練掌握切線長(zhǎng)定理.5、D【解析】【分析】根據(jù)多邊形內(nèi)角和公式可直接進(jìn)行排除選項(xiàng).【詳解】解:A、是一個(gè)三角形,其內(nèi)角和為180°;B、是一個(gè)四邊形,其內(nèi)角和為360°;C、是一個(gè)五邊形,其內(nèi)角和為540°;D、是一個(gè)六邊形,其內(nèi)角和為720°;∴內(nèi)角和最大的是六邊形;故選D.【考點(diǎn)】本題主要考查多邊形內(nèi)角和,熟練掌握多邊形內(nèi)角和公式是解題的關(guān)鍵.二、填空題1、【解析】【分析】先利用正多邊形內(nèi)角和公式求得每個(gè)內(nèi)角,再利用扇形面積公式求出扇形ABF、扇形DCE的面積,即可得出結(jié)果.【詳解】由正多邊形每個(gè)內(nèi)角公式可得該正六邊形的每一個(gè)內(nèi)角;∵,;則陰影部分面積為:.【考點(diǎn)】本題考查了正多邊形和圓、扇形面積計(jì)算等知識(shí);掌握正多邊形內(nèi)角的計(jì)算公式和扇形面積公式是解題的關(guān)鍵.2、
【解析】【分析】根據(jù)題意,可以發(fā)現(xiàn)正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;旋轉(zhuǎn)后的正八變形相當(dāng)于將正方形剪掉了的4個(gè)全等的等腰直角三角形,設(shè)等腰直角三角形的邊長(zhǎng)為x,則正八邊形的邊長(zhǎng)為x;然后根據(jù)x+x+x=4求得x;最后用正方形的面積減去這八個(gè)等腰直角三角形的面積即可.【詳解】解:由題意得:正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;則將一個(gè)正七邊形繞其中心最少旋轉(zhuǎn)所得圖形與原圖的重疊部分是正多邊形;由題意得:旋轉(zhuǎn)后的正八變形相當(dāng)于將正方形剪掉了的4個(gè)全等的等腰直角三角形,設(shè)等腰直角三角形的邊長(zhǎng)為x,則正八邊形的邊長(zhǎng)為x∴x+x+x=4,解得x=4-2∴減去的每個(gè)等腰直角三角形的面積為:∴正八邊形的面積為:正方形的面積-4×等腰直角三角形的面積=4×4-4()=.故答案為,.【考點(diǎn)】本題考查了旋轉(zhuǎn)變換、圖形規(guī)律以及勾股定理等知識(shí),根據(jù)題意找到旋轉(zhuǎn)規(guī)律是解答本題的關(guān)鍵.3、48°【解析】【分析】連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結(jié)合圖形計(jì)算即可.【詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點(diǎn)睛:本題考查的是正多邊形與圓的有關(guān)計(jì)算,掌握正多邊形的中心角的計(jì)算公式是解題的關(guān)鍵.4、【解析】【分析】先求出A、B、E的坐標(biāo),然后求出半圓的直徑為4,由于E為定點(diǎn),P是半圓AB上的動(dòng)點(diǎn),N為EP的中點(diǎn),所以N的運(yùn)動(dòng)路經(jīng)為直徑為2的半圓,計(jì)算即可.【詳解】解:,∴點(diǎn)E的坐標(biāo)為(1,-2),令y=0,則,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E為定點(diǎn),P是半圓AB上的動(dòng)點(diǎn),N為EP的中點(diǎn),所以N的運(yùn)動(dòng)路經(jīng)為直徑為2的半圓,如圖,∴點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng)是.【考點(diǎn)】本題屬于二次函數(shù)和圓的綜合問(wèn)題,考查了運(yùn)動(dòng)路徑的問(wèn)題,熟練掌握二次函數(shù)和圓的基礎(chǔ)是解題的關(guān)鍵.5、5cm.【解析】【分析】設(shè)圓錐的底面圓的半徑長(zhǎng)為rcm,根據(jù)圓錐的側(cè)面積公式計(jì)算即可.【詳解】解:設(shè)圓錐的底面圓的半徑長(zhǎng)為rcm.則×2π?r×12=60π,解得:r=5(cm),故答案為5cm.【考點(diǎn)】圓錐的側(cè)面積公式是本題的考點(diǎn),牢記其公式是解題的關(guān)鍵.三、解答題1、(1)證明見(jiàn)解析;(2)5.【解析】【分析】(1)連接,根據(jù)切線的性質(zhì)可得,再證,然后再根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì)說(shuō)明即可;(2)作于點(diǎn),設(shè)的半徑為,先證四邊形是矩形,進(jìn)而求得OE和AE,然后根據(jù)勾股定理解答即可.【詳解】(1)證明:如圖1:連接,∵是切線,∴.∵,∴,∴.∵,∴,∴,∴平分;(2)解:如圖2,作于點(diǎn),設(shè)的半徑為.∵,,∴,∴四邊形是矩形,∴,,∴,∴,解得,∴的半徑是5.【考點(diǎn)】本題考查了圓的切線的性質(zhì)、等腰三角形的性質(zhì)、平行線的性質(zhì)以及勾股定理等內(nèi)容,靈活應(yīng)用所學(xué)知識(shí)成為解答本題的關(guān)鍵.2、(1)證明見(jiàn)詳解(2)(3)作圖見(jiàn)詳解【解析】【分析】(1)根據(jù)直徑所對(duì)的圓周角是直角、等腰三角形的三線合一即可證明;(2)根據(jù)切線的性質(zhì)可以得到,然后在等腰直角三角形中即可求解;(3)根據(jù)等弧所對(duì)的圓周角相等,可知可以作出AD的垂直平分線,的角平分線,的角平分線等方法均可得到結(jié)論.(1)證明:∵是的直徑,∴,∴,∵,∴.(2)∵與相切,∴,又∵,∴.(3)如下圖,點(diǎn)就是所要作的的中點(diǎn).【考點(diǎn)】本題考查了等腰三角形的三線合一、切線的性質(zhì)、以及尺規(guī)作圖、等弧所對(duì)的圓周角相等,理解圓的相關(guān)知識(shí)并掌握基本的尺規(guī)作圖方法是解題的關(guān)鍵.3、【解析】【分析】連接CO,利用垂徑定理求解再令⊙O的半徑為rm,利用勾股定理建立方程求解半徑即可得到答案.【詳解】解:連接CO.∵M(jìn)是弦CD的中點(diǎn),且EM經(jīng)過(guò)圓心O,∴EM⊥CD,且CM=CD=×4=2.在Rt△OCM中,令⊙O的半徑為rm,∵OC2=OM2+CM2,∴,解得:r=.【考點(diǎn)】本題考查的是垂徑定理的應(yīng)用,勾股定理的應(yīng)用,掌握利用垂徑定理構(gòu)建直角三角形是解題的關(guān)鍵.4、(1)=;(2)答案見(jiàn)解析;(3)圓外切四邊形的對(duì)邊之和相等;(4)4;10;12;6【解析】【分析】(1)根據(jù)圓外切四邊形的定義猜想得出結(jié)論;(2)根據(jù)切線長(zhǎng)定理即可得出結(jié)論;(3)由(2)可得出答案;(4)根據(jù)圓外切四邊形的性質(zhì)求出第四邊,利用周長(zhǎng)建立方程求解即可得出結(jié)論.【詳解】(1)∵⊙O與四邊形ABCD的邊AB,BC,CD,DA分別相切于點(diǎn)E,F(xiàn),G,H,∴猜想AB+CD=AD+BC,故答案為:=.(2)已知:四邊形ABCD的四邊AB,BC,CD,DA都于⊙O相切于G,F(xiàn),E,H,求證:AD+BC=AB+CD,證明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圓外切四邊形的對(duì)邊和相等.(3)由(2)可知:圓外切四邊形的對(duì)邊和相等.故答案為:圓外切四邊形的對(duì)邊和相等;(4)∵相鄰的三條邊的比為2:5:6,∴設(shè)此三邊為2x,5x,6x,根據(jù)圓外切四邊形的性質(zhì)得,第四邊為2x+6x?5x=3x,∵圓外切四邊形的周長(zhǎng)為32,∴2x+5x+6x+3x=16x=32,∴x=2,∴此四邊形的四邊的長(zhǎng)為2x=4,5x=10,6x=12,3x=6.即此四邊形各邊的長(zhǎng)為:4,10,12,6.【考點(diǎn)】此題是圓的綜合題,主要考查了新定義圓的外切四邊形的性質(zhì),四邊形的周長(zhǎng),切線長(zhǎng)定理,理解和掌握?qǐng)A外切四邊形的定義是解本題的關(guān)鍵.5、(1)見(jiàn)解析;(2)3【解析】【分析】(1)連接OD,根據(jù)已知條件得到∠BOD=180°=60°,根據(jù)等腰三角形的性質(zhì)得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到結(jié)論;(2)連接BD,根據(jù)圓周角定理得到∠ADB=90°,解直角三角形即可得到結(jié)論.【詳解】(1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理工作者崗位考題詳解
- 球囊擴(kuò)張式與機(jī)械瓣膜的選擇策略
- 律師職業(yè)資格認(rèn)證考試面試指南
- 人力資源專員面試全攻略及答案解析
- 深度解析(2026)《GBT 19162-2011梭魚》
- 游戲公司行政崗位面試題與答案
- 預(yù)算分析師面試題集
- 年產(chǎn)xxx保健養(yǎng)生設(shè)備項(xiàng)目可行性分析報(bào)告
- 節(jié)能環(huán)保設(shè)備管理員筆試題目及精講答案
- 德制螺母項(xiàng)目可行性分析報(bào)告范文(總投資5000萬(wàn)元)
- 臨床麻醉的經(jīng)驗(yàn)與教訓(xùn)化險(xiǎn)為夷的80個(gè)病例
- 口腔正畸學(xué)課件
- 血常規(guī)報(bào)告單模板
- 物聯(lián)網(wǎng)就在身邊初識(shí)物聯(lián)網(wǎng)課件
- 路基拼接技術(shù)施工方案
- 宏觀經(jīng)濟(jì)學(xué)PPT完整全套教學(xué)課件
- 陜09J02 屋面標(biāo)準(zhǔn)圖集
- 2023年上海清算登記托管結(jié)算試題試題
- 動(dòng)車組受電弓故障分析及改進(jìn)探討
- GB/T 41932-2022塑料斷裂韌性(GIC和KIC)的測(cè)定線彈性斷裂力學(xué)(LEFM)法
- 2023年浙江省大學(xué)生物理競(jìng)賽試卷
評(píng)論
0/150
提交評(píng)論