版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
日照市八年級(jí)數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題復(fù)習(xí)題(附答案)(1)一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.如圖,長(zhǎng)方體的長(zhǎng)為15cm,寬為10cm,高為20cm,點(diǎn)B離點(diǎn)C5cm,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)A爬到點(diǎn)B去吃一滴蜜糖,需要爬行的最短距離是()cm.A.25 B.20 C.24 D.102.我國(guó)古代偉大的數(shù)學(xué)家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個(gè)正方形和兩對(duì)全等的直角三角形,得到一個(gè)恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個(gè)這樣的圖形拼成,若a=3,b=4,則該矩形的面積為(
)A.20 B.24 C. D.3.如圖,P為等邊三角形ABC內(nèi)的一點(diǎn),且P到三個(gè)頂點(diǎn)A,B,C的距離分別為3,4,5,則△ABC的面積為()A. B. C. D.4.將6個(gè)邊長(zhǎng)是1的正方形無(wú)縫隙鋪成一個(gè)矩形,則這個(gè)矩形的對(duì)角線長(zhǎng)等于()A. B. C.或者 D.或者5.如圖,小紅想用一條彩帶纏繞易拉罐,正好從A點(diǎn)繞到正上方B點(diǎn)共四圈,已知易拉罐底面周長(zhǎng)是12cm,高是20cm,那么所需彩帶最短的是()A.13cm B.4cm C.4cm D.52cm6.如圖,正方形ABCD的邊長(zhǎng)為8,M在DC上,且DM=2,N是AC上的一動(dòng)點(diǎn),則DN+MN的最小值是()A.8 B.9 C.10 D.127.如圖,在四邊形ABCD中,∠DAB=30°,點(diǎn)E為AB的中點(diǎn),DE⊥AB,交AB于點(diǎn)E,DE=,BC=1,CD=,則CE的長(zhǎng)是()A. B. C. D.8.如圖所示,在中,,,.分別以,,為直徑作半圓(以為直徑的半圓恰好經(jīng)過(guò)點(diǎn),則圖中陰影部分的面積是()A.4 B.5 C.7 D.69.如果正整數(shù)a、b、c滿足等式,那么正整數(shù)a、b、c叫做勾股數(shù).某同學(xué)將自己探究勾股數(shù)的過(guò)程列成下表,觀察表中每列數(shù)的規(guī)律,可知的值為()A.47 B.62 C.79 D.9810.如圖,所有的四邊形都是正方形,所有的三角形都是直角三角形。若正方形A、B、C、D的邊長(zhǎng)是3、5、2、3,則最大正方形E的面積是A.13 B.2 C.47 D.11.如圖,在中,cm,cm,點(diǎn)D、E分別在AC、BC上,現(xiàn)將沿DE翻折,使點(diǎn)C落在點(diǎn)處,連接,則長(zhǎng)度的最小值()A.不存在 B.等于1cmC.等于2cm D.等于2.5cm12.如圖,A、B兩點(diǎn)在直線l的兩側(cè),點(diǎn)A到直線l的距離AC=4,點(diǎn)B到直線l的距離BD=2,且CD=6,P為直線CD上的動(dòng)點(diǎn),則的最大值是()A. B. C. D.613.如圖,在矩形ABCD中,AB=3,BC=4,在矩形內(nèi)部有一動(dòng)點(diǎn)P滿足S△PAB=3S△PCD,則動(dòng)點(diǎn)P到點(diǎn)A,B兩點(diǎn)距離之和PA+PB的最小值為()A.5 B. C. D.14.下列四組數(shù)中不能構(gòu)成直角三角形的一組是()A.1,2, B.3,5,4 C.5,12,13 D.3,2,15.如圖,點(diǎn)和點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)分別是4和2,分別以點(diǎn)和點(diǎn)為圓心,線段的長(zhǎng)度為半徑畫(huà)弧,在數(shù)軸的上方交于點(diǎn).再以原點(diǎn)為圓心,為半徑畫(huà)弧,與數(shù)軸的正半軸交于點(diǎn),則點(diǎn)對(duì)應(yīng)的數(shù)為()A.3.5 B. C. D.16.如圖,西安路與南京路平行,并且與八一街垂直,曙光路與環(huán)城路垂直.如果小明站在南京路與八一街的交叉口,準(zhǔn)備去書(shū)店,按圖中的街道行走,最近的路程約為()A. B. C. D.17.以下列各組數(shù)為邊長(zhǎng),能構(gòu)成直角三角形的是A. B.、、C.、、 D.、、18.如圖,在中,,,邊上的中線,請(qǐng)?jiān)囍卸ǖ男螤钍牵ǎ〢.直角三角形 B.等邊三角形 C.等腰三角形 D.以上都不對(duì)19.如圖,在等邊△ABC中,AB=15,BD=6,BE=3,點(diǎn)P從點(diǎn)E出發(fā)沿EA方向運(yùn)動(dòng),連結(jié)PD,以PD為邊,在PD右側(cè)按如圖方式作等邊△DPF,當(dāng)點(diǎn)P從點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)F運(yùn)動(dòng)的路徑長(zhǎng)是()A.8 B.10 C. D.1220.如圖,在四邊形ABCD中,,,,.分別以點(diǎn)A,C為圓心,大于長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E,作射線BE交AD于點(diǎn)F,交AC于點(diǎn)O.若點(diǎn)O是AC的中點(diǎn),則CD的長(zhǎng)為()A. B.4 C.3 D.21.△ABC的三邊分別為,下列條件能推出△ABC是直角三角形的有()①;②;③∠A=∠B∠C;④∠A∶∠B∶∠C=1∶2∶3;⑤;⑥A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)22.如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點(diǎn)在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為2,l2,l3之間的距離為3,則AC的長(zhǎng)是()A. B. C.4 D.723.如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別是點(diǎn)D、E,AD=3,BE=1,則BC的長(zhǎng)是()A. B.2 C. D.24.如果下列各組數(shù)是三角形的三邊,那么不能組成直角三角形的一組數(shù)是()A. B. C. D.25.下列以線段a、b、c的長(zhǎng)為邊的三角形中,不能構(gòu)成直角三角形的是()A. B.C. D.26.如圖,正方形ABCD和正方形CEFG邊長(zhǎng)分別為a和b,正方形CEFG繞點(diǎn)C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正確結(jié)論有()A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)27.如圖,在中,,以的三邊為邊分別向外作等邊三角形,,,若,的面積分別是10和4,則的面積是()A.4 B.6 C.8 D.928.如圖,在矩形紙片ABCD中,AD=9,AB=3,將其折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,那么折痕EF的長(zhǎng)為()A.3 B. C. D.929.如圖,在的正方形網(wǎng)格中,的度數(shù)是()A.22.5° B.30° C.45° D.60°30.下列說(shuō)法不能得到直角三角形的()A.三個(gè)角度之比為1:2:3的三角形 B.三個(gè)邊長(zhǎng)之比為3:4:5的三角形C.三個(gè)邊長(zhǎng)之比為8:16:17的三角形 D.三個(gè)角度之比為1:1:2的三角形【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.A解析:A【分析】分三種情況討論:把左側(cè)面展開(kāi)到水平面上,連結(jié)AB;把右側(cè)面展開(kāi)到正面上,連結(jié)AB,;把向上的面展開(kāi)到正面上,連結(jié)AB;然后利用勾股定理分別計(jì)算各情況下的AB,再進(jìn)行大小比較.【詳解】把左側(cè)面展開(kāi)到水平面上,連結(jié)AB,如圖1把右側(cè)面展開(kāi)到正面上,連結(jié)AB,如圖2把向上的面展開(kāi)到正面上,連結(jié)AB,如圖3∵∴∴需要爬行的最短距離為25cm故選:A.【點(diǎn)睛】本題考查了平面展開(kāi)及其最短路徑問(wèn)題:先根據(jù)題意把立體圖形展開(kāi)成平面圖形后,再確定兩點(diǎn)之間的最短路徑.一般情況是兩點(diǎn)之間,線段最短.在平面圖形上構(gòu)造直角三角形解決問(wèn)題.2.B解析:B【分析】設(shè)小正方形的邊長(zhǎng)為x,則矩形的一邊長(zhǎng)為(a+x),另一邊為(b+x),根據(jù)矩形的面積的即等于兩個(gè)三角形的面積之和,也等于長(zhǎng)乘以寬,列出方程,化簡(jiǎn)再代入a,b的值,得出x2+7x=12,再根據(jù)矩形的面積公式,整體代入即可.【詳解】設(shè)小正方形的邊長(zhǎng)為x,則矩形的一邊長(zhǎng)為(a+x),另一邊為(b+x),根據(jù)題意得:2(ax+x2+bx)=(a+x)(b+x),化簡(jiǎn)得:ax+x2+bx-ab=0,又∵a=3,b=4,∴x2+7x=12;∴該矩形的面積為=(a+x)(b+x)=(3+x)(4+x)=x2+7x+12=24.故答案為B.【點(diǎn)睛】本題考查了勾股定理的證明以及運(yùn)用和一元二次方程的運(yùn)用,求出小正方形的邊長(zhǎng)是解題的關(guān)鍵.3.A解析:A【解析】分析:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得△BEA,根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BP=4,AE=PC=5,∠PBE=60°,則△BPE為等邊三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延長(zhǎng)BP,作AF⊥BP于點(diǎn)F.AP=3,PE=4,根據(jù)勾股定理的逆定理可得到△APE為直角三角形,且∠APE=90°,即可得到∠APB的度數(shù),在直角△APF中利用三角函數(shù)求得AF和PF的長(zhǎng),則在直角△ABF中利用勾股定理求得AB的長(zhǎng),進(jìn)而求得三角形ABC的面積.詳解:∵△ABC為等邊三角形,∴BA=BC,可將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得△BEA,連EP,且延長(zhǎng)BP,作AF⊥BP于點(diǎn)F.如圖,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE為等邊三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE為直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.則△ABC的面積是?AB2=?(25+12)=9+.故選A.點(diǎn)睛:本題考查了等邊三角形的判定與性質(zhì)、勾股定理的逆定理以及旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個(gè)圖形全等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.4.C解析:C【分析】如圖1或圖2所示,分類討論,利用勾股定理可得結(jié)論.【詳解】當(dāng)如圖1所示時(shí),AB=2,BC=3,∴AC=;當(dāng)如圖2所示時(shí),AB=1,BC=6,∴AC=;故選C.【點(diǎn)睛】本題主要考查圖形的拼接,數(shù)形結(jié)合,分類討論是解答此題的關(guān)鍵.5.D解析:D【解析】【分析】本題就是把圓柱的側(cè)面展開(kāi)成矩形,“化曲面為平面”,用勾股定理解決..要求彩帶的長(zhǎng),需將圓柱的側(cè)面展開(kāi),進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長(zhǎng)時(shí),借助于勾股定理.【詳解】如圖,由圖可知,彩帶從易拉罐底端的A處繞易拉罐4圈后到達(dá)頂端的B處,將易拉罐表面切開(kāi)展開(kāi)呈長(zhǎng)方形,則螺旋線長(zhǎng)為四個(gè)長(zhǎng)方形并排后的長(zhǎng)方形的對(duì)角線長(zhǎng),設(shè)彩帶最短長(zhǎng)度為xcm,∵∵易拉罐底面周長(zhǎng)是12cm,高是20cm,∴x2=(12×4)2+202∴x2=(12×4)2+202,所以彩帶最短是52cm.故選D.【點(diǎn)睛】本題考查了平面展開(kāi)??最短路徑問(wèn)題,圓柱的側(cè)面展開(kāi)圖是一個(gè)矩形,此矩形的長(zhǎng)等于圓柱底面周長(zhǎng),高等于圓柱的高,6.C解析:C【解析】【分析】要求DN+MN的最小值,DN,MN不能直接求,可考慮通過(guò)作輔助線轉(zhuǎn)化DN,MN的值,從而找出其最小值求解.【詳解】解:∵正方形是軸對(duì)稱圖形,點(diǎn)B與點(diǎn)D是關(guān)于直線AC為對(duì)稱軸的對(duì)稱點(diǎn),∴連接BN,BD,則直線AC即為BD的垂直平分線,∴BN=ND∴DN+MN=BN+MN連接BM交AC于點(diǎn)P,∵點(diǎn)N為AC上的動(dòng)點(diǎn),由三角形兩邊和大于第三邊,知當(dāng)點(diǎn)N運(yùn)動(dòng)到點(diǎn)P時(shí),BN+MN=BP+PM=BM,BN+MN的最小值為BM的長(zhǎng)度,∵四邊形ABCD為正方形,∴BC=CD=8,CM=8?2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故選:C.【點(diǎn)睛】此題考查正方形的性質(zhì)和軸對(duì)稱及勾股定理等知識(shí)的綜合應(yīng)用,解題的難點(diǎn)在于確定滿足條件的點(diǎn)N的位置:利用軸對(duì)稱的方法.然后熟練運(yùn)用勾股定理.7.D解析:D【解析】【分析】連接BD,作CF⊥AB于F,由線段垂直平分線的性質(zhì)得出BD=AD,AE=BE,得出∠DBE=∠DAB=30°,由直角三角形的性質(zhì)得出BD=AD=2DE=,AE=BE=DE=3,證出△BCD是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=BC=,CF=BF=,求出EF=BE+BF=,在Rt△CEF中,由勾股定理即可得出結(jié)果.【詳解】解:連接BD,作CF⊥AB于F,如圖所示:則∠BFC=90°,∵點(diǎn)E為AB的中點(diǎn),DE⊥AB,∴BD=AD,AE=BE,∵∠DAB=30°,∴∠DBE=∠DAB=30°,BD=AD=2DE=,AE=BE=DE=3,∵BC2+BD2=12+(2)2=13=CD2,∴△BCD是直角三角形,∠CBD=90°,∴∠CBF=180°-30°-90°=60°,∴∠BCF=30°,∠BFC=90°,∴∠BCF=30°,∴BF=BC=,CF=BF=,∴EF=BE+BF=,在Rt△CEF中,由勾股定理得:CE=;故選D.【點(diǎn)睛】本題考查了勾股定理、勾股定理的逆定理、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì);熟練掌握勾股定理和逆定理是解題的關(guān)鍵.8.D解析:D【解析】【分析】先利用勾股定理計(jì)算BC的長(zhǎng)度,然后陰影部分的面積=以AB為直徑的半圓面積+以BC為直徑的半圓面積+-以AC為直徑的半圓面積.【詳解】解:在中∵,,∴,∴BC=3,∴陰影部分的面積=以AB為直徑的半圓面積+以BC為直徑的半圓面積+-以AC為直徑的半圓面積=6.故選D.【點(diǎn)睛】本題考查扇形面積的計(jì)算和勾股定理.在本題中解題關(guān)鍵是用重疊法去表示陰影部分的面積.9.C解析:C【分析】依據(jù)每列數(shù)的規(guī)律,即可得到,進(jìn)而得出的值.【詳解】解:由題可得:……當(dāng)故選C【點(diǎn)睛】本題為勾股數(shù)與數(shù)列規(guī)律綜合題;觀察數(shù)列,找出規(guī)律是解答本題的關(guān)鍵.10.C解析:C【分析】根據(jù)勾股定理即可得到正方形A的面積加上B的面積加上C的面積和D的面積是E的面積.即可求解.【詳解】四個(gè)正方形的面積的和是正方形E的面積:即;故答案為C.【點(diǎn)睛】理解正方形A,B,C,D的面積的和是E的面積是解決本題的關(guān)鍵.11.C解析:C【分析】當(dāng)C′落在AB上,點(diǎn)B與E重合時(shí),AC'長(zhǎng)度的值最小,根據(jù)勾股定理得到AB=5cm,由折疊的性質(zhì)知,BC′=BC=3cm,于是得到結(jié)論.【詳解】解:當(dāng)C′落在AB上,點(diǎn)B與E重合時(shí),AC'長(zhǎng)度的值最小,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,由折疊的性質(zhì)知,BC′=BC=3cm,∴AC′=AB-BC′=2cm.故選:C.【點(diǎn)睛】本題考查了翻折變換(折疊問(wèn)題),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.12.C解析:C【解析】試題解析:作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),連接并延長(zhǎng),與直線的交點(diǎn)即為使得取最大值時(shí)對(duì)應(yīng)的點(diǎn)此時(shí)過(guò)點(diǎn)作于點(diǎn)如圖,四邊形為矩形,的最大值為:故答案為:13.B解析:B【分析】首先由,得知?jiǎng)狱c(diǎn)P在與AB平行且與AB的距離為3的直線上,作點(diǎn)A關(guān)于直線的對(duì)稱點(diǎn)E,連接AE、BE,則BE的長(zhǎng)就是所求的最短距離,然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【詳解】解:∵,設(shè)點(diǎn)P到CD的距離為h,則點(diǎn)P到AB的距離為(4-h),則,解得:h=1,∴點(diǎn)P到CD的距離1,到AB的距離為3,∴如下圖所示,動(dòng)點(diǎn)P在與AB平行且與AB的距離為3的直線上,作點(diǎn)A關(guān)于直線的對(duì)稱點(diǎn)E,連接AE、BE,且兩點(diǎn)之間線段最短,∴PA+PB的最小值即為BE的長(zhǎng)度,AE=6,AB=3,∠BAE=90°,根據(jù)勾股定理:,故選:B.【點(diǎn)睛】本題考查了軸對(duì)稱—最短路線問(wèn)題(兩點(diǎn)之間線段最短),勾股定理,得出動(dòng)點(diǎn)P所在的位置是解題的關(guān)鍵.14.A解析:A【解析】A.
12+22≠()2,不能構(gòu)成直角三角形,故此選項(xiàng)符合題意;B.
32+42=52,能構(gòu)成直角三角形,故此選項(xiàng)不符合題意;C.
52+122=132,能構(gòu)成直角三角形,故此選項(xiàng)不符合題意;D.
32+22=()2,能構(gòu)成直角三角形,故此選項(xiàng)不符合題意;故選A.15.B解析:B【分析】如圖,作CD⊥AB于點(diǎn)D,由題意可得△ABC是等邊三角形,從而可得BD、OD的長(zhǎng),然后根據(jù)勾股定理即可求出CD與OC的長(zhǎng),進(jìn)而可得OM的長(zhǎng),于是可得答案.【詳解】解:∵點(diǎn)和點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)分別是4和2,∴OB=2,OA=4,如圖,作CD⊥AB于點(diǎn)D,則由題意得:CA=CB=AB=2,∴△ABC是等邊三角形,∴BD=AD=,∴OD=OB+BD=3,,∴,∴OM=OC=,∴點(diǎn)對(duì)應(yīng)的數(shù)為.故選:B.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸、等邊三角形的判定與性質(zhì)以及勾股定理等知識(shí),屬于常見(jiàn)題型,正確理解題意、熟練掌握上述知識(shí)是解題的關(guān)鍵.16.D解析:D【分析】由于BC∥AD,那么有∠DAE=∠ACB,由題意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可證△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根據(jù)圖可知從B到E的走法有兩種,分別計(jì)算比較即可.【詳解】解:如圖所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC=∴CE=AC-AE=200,從B到E有兩種走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故選D.【點(diǎn)睛】本題考查了平行線的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理.解題的關(guān)鍵是證明△ABC≌△DEA,并能比較從B到E有兩種走法.17.C解析:C【分析】利用勾股定理的逆定理依次計(jì)算各項(xiàng)后即可解答.【詳解】選項(xiàng)A,,不能構(gòu)成直角三角形;選項(xiàng)B,,不能構(gòu)成直角三角形;選項(xiàng)C,,能構(gòu)成直角三角形;選項(xiàng)D,,不能構(gòu)成直角三角形.故選C.【點(diǎn)睛】本題考查勾股定理的逆定理的應(yīng)用判斷三角形是否為直角三角形,已知三角形三邊的長(zhǎng),只要利用勾股定理的逆定理加以判斷即可.18.C解析:C【分析】利用勾股定理的逆定理可以推導(dǎo)出是直角三角形.再利用勾股定理求出AC,可得出AB=AC,即可判斷.【詳解】解:由已知可得CD=BD=5,即,是直角三角形,,故是等腰三角形.故選C【點(diǎn)睛】本題考查了勾股定理和它的逆定理,熟練掌握定理是解題關(guān)鍵.19.D解析:D【分析】首先利用等邊三角形的性質(zhì)和含30°直角三角形的運(yùn)用,判定△DPE≌△FDH,△DF2Q≌△ADE,然后利用全等三角形的性質(zhì),得出點(diǎn)F運(yùn)動(dòng)的路徑長(zhǎng).【詳解】∵△ABC為等邊三角形,∴∠B=60°,過(guò)D點(diǎn)作DE′⊥AB,過(guò)點(diǎn)F作FH⊥BC于H,如圖所示:則BE′=BD=3,∴點(diǎn)E′與點(diǎn)E重合,∴∠BDE=30°,DE=BE=3,∵△DPF為等邊三角形,∴∠PDF=60°,DP=DF,∴∠EDP+∠HDF=90°∵∠HDF+∠DFH=90°,∴∠EDP=∠DFH,在△DPE和△FDH中,,∴△DPE≌△FDH(AAS),∴FH=DE=3,∴點(diǎn)P從點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)F運(yùn)動(dòng)的路徑為一條線段,此線段到BC的距離為3,當(dāng)點(diǎn)P在E點(diǎn)時(shí),作等邊三角形DEF1,∠BDF1=30°+60°=90°,則DF1⊥BC,當(dāng)點(diǎn)P在A點(diǎn)時(shí),作等邊三角形DAF2,作F2Q⊥BC于Q,則四邊形DF1F2Q是矩形,∵∠BDE=30°,∠ADF2=60°,∴∠ADE+∠F2DQ=180°﹣30°﹣60°=90°,∵∠ADE+∠DAE=90°,∴∠F2DQ=∠DAE,在△DF2Q和△ADE中,,∴△DF2Q≌△ADE(AAS),∴DQ=AE=AB﹣BE=15﹣3=12,∴F1F2=DQ=12,∴當(dāng)點(diǎn)P從點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)F運(yùn)動(dòng)的路徑長(zhǎng)為12,故選:D.【點(diǎn)睛】此題主要考查等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),解題關(guān)鍵是作好輔助線.20.A解析:A【分析】連接FC,根據(jù)基本作圖,可得OE垂直平分AC,由垂直平分線的性質(zhì)得出.再根據(jù)ASA證明,那么,等量代換得到,利用線段的和差關(guān)系求出.然后在直角中利用勾股定理求出CD的長(zhǎng).【詳解】解:如圖,連接FC,則.,.在與中,,,,,.在中,,,,.故選A.【點(diǎn)睛】本題考查了作圖﹣基本作圖,勾股定理,線段垂直平分線的判定與性質(zhì),全等三角形的判定與性質(zhì),難度適中.求出CF與DF是解題的關(guān)鍵.21.D解析:D【分析】根據(jù)勾股定理的逆定理,三角形的內(nèi)角和定理,分別對(duì)每個(gè)選項(xiàng)進(jìn)行判斷,即可得到答案.【詳解】解:∵,得,符合勾股定理逆定理,則①正確;∵,得到,符合勾股定理逆定理,則②正確;∵∠A=∠B∠C,得∠B=∠A+∠C,∵∠A+∠B+∠C=180°,∴∠B=90°,故③正確;∵∠A∶∠B∶∠C=1∶2∶3,∠A+∠B+∠C=180°,∴,故④正確;∵,則⑤不能構(gòu)成直角三角形,故⑤錯(cuò)誤;∵,則⑥能構(gòu)成直角三角形,故⑥正確;∴能構(gòu)成直角三角形的有5個(gè);故選擇:D.【點(diǎn)睛】本題考查了勾股定理的逆定理,以及三角形的內(nèi)角和定理,解題的關(guān)鍵是熟練掌握用勾股定理的逆定理和三角形內(nèi)角和定理進(jìn)行判斷三角形是直角三角形.22.A解析:A【解析】試題解析:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根據(jù)勾股定理,得BC=,在Rt△ABC中,根據(jù)勾股定理,得AC=.故選A.考點(diǎn):1.勾股定理;2.全等三角形的性質(zhì);3.全等三角形的判定.23.D解析:D【分析】根據(jù)條件可以得出∠E=∠ADC=90°,進(jìn)而得出△CEB≌△ADC,就可以得出AD=CE,再利用勾股定理就可以求出BC的值.【詳解】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴CE=AD=3,在Rt△BEC中,,故選D.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì)、熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵.24.B解析:B【分析】根據(jù)勾股定理的逆定理分別計(jì)算各個(gè)選項(xiàng),選出正確的答案.【詳解】A、,能組成直角三角形,故正確;B、,不能組成直角三角形,故錯(cuò)誤;C、,能組成直角三角形,故正確;D、,能組成直角三角形,故正確;故選:B.【點(diǎn)睛】本題考查了勾股定理的逆定理:已知三角形ABC的三邊滿足a2+b2=c2,則三角形ABC是直角三角形.25.D解析:D【分析】根據(jù)直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能構(gòu)成直角三角形.【詳解】解:A、因?yàn)?2+402=412,故能構(gòu)成直角三角形;B、因?yàn)?2+52=,故能構(gòu)成直角三角形;C、因?yàn)椋誓軜?gòu)成直角三角形;D、因?yàn)?12+122≠152,故不能構(gòu)成直角三角形;故選:D.【點(diǎn)睛】本題考查的是勾股定理的逆定理,當(dāng)三角形中三邊滿足關(guān)系時(shí),則三角形為直角三角形.26.D解析:D【解析】分析:由四邊形ABCD與四邊形EFGC都為正方形,得到四條邊相等,四個(gè)角為直角,利用SAS得到三角形BCE與三角形DCG全等,利用全等三角形對(duì)應(yīng)邊相等即可得到BE=DG,利用全等三角形對(duì)應(yīng)角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定義得到∠BOD為直角,利用勾股定理求出所求式子的值即可.詳解:①∵四邊形ABCD和EFGC都為正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG,∴BE=DG,故結(jié)論①正確.②如圖所示,設(shè)BE交DC于點(diǎn)M,交DG于點(diǎn)O.由①可知,△BCE≌△DCG,∴∠CBE=∠CDG,即∠CBM=∠MDO.又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,∴∠DOM=∠MCB=90°,∴BE⊥DG.故②結(jié)論正確.③如圖所示,連接BD、EG,由②知,BE⊥DG,則在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 初中生物干旱脅迫對(duì)光合作用生理指標(biāo)的影響實(shí)驗(yàn)設(shè)計(jì)課題報(bào)告教學(xué)研究課題報(bào)告
- 2025年施秉縣馬號(hào)鎮(zhèn)中心衛(wèi)生院公開(kāi)招聘編外工作人員備考題庫(kù)附答案詳解
- 2025年將樂(lè)縣關(guān)于公開(kāi)招聘緊缺急需專業(yè)新任教師備考題庫(kù)參考答案詳解
- 2025年同濟(jì)大學(xué)海洋與地球科學(xué)學(xué)院“同濟(jì)”號(hào)智能海洋科考船實(shí)驗(yàn)探測(cè)員招聘?jìng)淇碱}庫(kù)附答案詳解
- 水墨中國(guó)風(fēng)教育教學(xué)模板
- 2025年貴州興義市消防救援大隊(duì)招錄專職消防員招錄備考題庫(kù)有答案詳解
- 2025年長(zhǎng)治十三中招聘代課教師備考題庫(kù)及參考答案詳解一套
- 2025年鹽城經(jīng)濟(jì)技術(shù)開(kāi)發(fā)區(qū)部分單位公開(kāi)招聘合同制工作人員7人備考題庫(kù)及一套答案詳解
- 2025年溫嶺市溫中雙語(yǔ)學(xué)校招聘(編外)教師備考題庫(kù)及完整答案詳解一套
- 湖北鐵道運(yùn)輸職業(yè)學(xué)院(武漢鐵路技師學(xué)院)專項(xiàng)公開(kāi)招聘工作人員20人備考題庫(kù)及答案詳解1套
- 寧夏調(diào)味料項(xiàng)目可行性研究報(bào)告
- GRR計(jì)算表格模板
- 長(zhǎng)沙市長(zhǎng)郡雙語(yǔ)實(shí)驗(yàn)學(xué)校人教版七年級(jí)上冊(cè)期中生物期中試卷及答案
- 馬克思主義經(jīng)典著作選讀智慧樹(shù)知到課后章節(jié)答案2023年下四川大學(xué)
- 金庸短篇小說(shuō)《越女劍》中英文對(duì)照版
- 2023年洛陽(yáng)市洛龍區(qū)政務(wù)中心綜合窗口人員招聘筆試題庫(kù)及答案解析
- GB/T 19867.1-2005電弧焊焊接工藝規(guī)程
- GB/T 16102-1995車間空氣中硝基苯的鹽酸萘乙二胺分光光度測(cè)定方法
- GB/T 15171-1994軟包裝件密封性能試驗(yàn)方法
- 醫(yī)院轉(zhuǎn)院證明樣本圖片(范文四篇)
- 外科護(hù)理學(xué)期末試卷3套18p
評(píng)論
0/150
提交評(píng)論