重難點(diǎn)解析云南省彌勒市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)評(píng)試題(解析卷)_第1頁(yè)
重難點(diǎn)解析云南省彌勒市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)評(píng)試題(解析卷)_第2頁(yè)
重難點(diǎn)解析云南省彌勒市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)評(píng)試題(解析卷)_第3頁(yè)
重難點(diǎn)解析云南省彌勒市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)評(píng)試題(解析卷)_第4頁(yè)
重難點(diǎn)解析云南省彌勒市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)評(píng)試題(解析卷)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省彌勒市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,嘉嘉在A時(shí)測(cè)得一棵4米高的樹的影長(zhǎng)為,若A時(shí)和B時(shí)兩次日照的光線互相垂直,則B時(shí)的影長(zhǎng)為(

)A. B. C. D.2、如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點(diǎn)E為AB中點(diǎn),沿過(guò)點(diǎn)E的直線折疊,使點(diǎn)B與點(diǎn)A重合,折痕現(xiàn)交于點(diǎn)F,已知EF=,則BC的長(zhǎng)是()A. B.3 C.3 D.33、在中,,,,的對(duì)邊分別是a,b,c,若,,則的面積是(

)A. B. C. D.4、《九章算術(shù)》中的“折竹抵地”問(wèn)題:今有竹高一丈,末折抵地,去根六尺.問(wèn)折高者幾何?意思是:一根竹子,原高一丈(一丈=10尺),一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部6尺遠(yuǎn),問(wèn)折斷處離地面的高度是多少?設(shè)折斷處離地面的高度為尺,則可列方程為(

)A. B.C. D.5、有一個(gè)直角三角形的兩邊長(zhǎng)分別為3和4,則第三邊的長(zhǎng)為()A.5 B. C. D.5或6、如圖所示,圓柱的高AB=3,底面直徑BC=3,現(xiàn)在有一只螞蟻想要從A處沿圓柱表面爬到對(duì)角C處捕食,則它爬行的最短距離是()A. B. C. D.7、如圖,有一塊直角三角形紙片,∠C=90°,AC=8,BC=6,將斜邊AB翻折,使點(diǎn)B落在直角邊AC的延長(zhǎng)線上的點(diǎn)E處,折痕為AD,則BD的長(zhǎng)為(

)A.2 B. C. D.4第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、《九章算術(shù)》中有“折竹抵地”問(wèn)題:“今有竹高一丈,末折抵地,去根三尺,問(wèn)折者高幾何?”題意是:有一根竹子原來(lái)高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問(wèn)折斷處離地面多高?如圖,設(shè)折斷處距離地面x尺,根據(jù)題意,可列方程為______.2、圖,在菱形ABCD中,,是銳角,于點(diǎn)E,M是AB的中點(diǎn),連接MD,若,則的值為______.3、如圖,已知四邊形中,,則四邊形的面積等于________.4、如圖,Rt△ABC中,∠C=90°,在△ABC外取點(diǎn)D,E,使AD=AB,AE=AC,且α+β=∠B,連結(jié)DE.若AB=4,AC=3,則DE=__.5、(2011貴州安順,16,4分)如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按圖中所示方法將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),那么△ADC′的面積是.6、我國(guó)古代的數(shù)學(xué)名著《九章算術(shù)》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問(wèn)索長(zhǎng)幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時(shí),繩索用盡問(wèn)繩索長(zhǎng)是多少?”示意圖如下圖所示,設(shè)繩索的長(zhǎng)為尺,根據(jù)題意,可列方程為__________.7、如圖,鐵路MN和公路PQ在O點(diǎn)處交匯,公路PQ上A處點(diǎn)距離O點(diǎn)240米,距離MN120米,如果火車行駛時(shí),周圍兩百米以內(nèi)會(huì)受到噪音的影響,那么火車在鐵路MN上沿ON方向,以144千米/時(shí)的速度行駛時(shí),A處受噪音影響的時(shí)間是_______s8、如圖,在的正方形網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),點(diǎn)、、均在格點(diǎn)上,則______.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,把長(zhǎng)方形紙片沿折疊,使點(diǎn)落在邊上的點(diǎn)處,點(diǎn)落在點(diǎn)處.(1)試說(shuō)明;(2)設(shè),,,試猜想,,之間的關(guān)系,并說(shuō)明理由.2、如圖,某商家想在商場(chǎng)大樓上懸掛一塊廣告牌,廣告牌高.根據(jù)商場(chǎng)規(guī)定廣告牌最高點(diǎn)不得高于地面20m,經(jīng)測(cè)量,測(cè)角儀支架高,在F處測(cè)得廣告牌底部點(diǎn)B的仰角為30°,在E處測(cè)得標(biāo)語(yǔ)牌頂部點(diǎn)A的仰角為45°,,請(qǐng)計(jì)算說(shuō)明,商家這樣放廣告牌是否符合規(guī)定?(圖中點(diǎn)A,B,C,D,E,F(xiàn),G,H在同一平面內(nèi))3、閱讀與思考:請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).若直角三角形的三邊的長(zhǎng)都是正整數(shù),則三邊的長(zhǎng)為“勾股數(shù)”.構(gòu)造勾股數(shù),就是要尋找3個(gè)正整數(shù),使它們滿足“其中兩個(gè)數(shù)的平方和(或平方差)等于第三個(gè)數(shù)的平方”.通過(guò)觀察常見(jiàn)勾股數(shù)“3,4,5”;“5,12,13”;“7,24,25”……猜想當(dāng)一組勾股數(shù)中(),最小數(shù)為奇數(shù)時(shí),另兩個(gè)正整數(shù)和滿足比且,解得,.任務(wù):(1)請(qǐng)證明猜想成立,即證明,,構(gòu)成勾股數(shù).(2)若一組勾股數(shù)中,最小數(shù)為9,則另兩個(gè)數(shù)分別是________和________.4、若的三邊,,滿足條件,試判斷的形狀.5、我們知道,到線段兩端距離相等的點(diǎn)在線段的垂直平分線上.由此,我們可以引入如下新定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.(1)如圖1,點(diǎn)P在線段BC上,∠ABP=∠APD=∠PCD=90°,BP=CD.求證:點(diǎn)P是△APD的準(zhǔn)外心;(2)如圖2,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,△ABC的準(zhǔn)外心P在△ABC的直角邊上,試求AP的長(zhǎng).6、如圖,一個(gè)長(zhǎng)5m的梯子AB,斜靠在一豎直的墻AO上,這時(shí)AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點(diǎn).(1)求梯子底端B外移距離BD的長(zhǎng)度;(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.7、數(shù)學(xué)中,常對(duì)同一個(gè)量(圖形的面積、點(diǎn)的個(gè)數(shù)等)用兩種不同的方法計(jì)算,從而建立相等關(guān)系,我們把這種思想叫“算兩次”.“算兩次”也稱作富比尼原理,是一種重要的數(shù)學(xué)思想,由它可以推導(dǎo)出很多重要的公式.(1)如圖1,是一個(gè)長(zhǎng)為,寬為的長(zhǎng)方形,沿圖中虛線用剪刀均分成四個(gè)小長(zhǎng)方形,然后按圖2的方式拼成一個(gè)正方形.①用“算兩次”的方法計(jì)算圖2中陰影部分的面積:第一次列式為,第二次列式為,因?yàn)閮纱嗡兴闶奖硎镜氖峭粋€(gè)圖形的面積,所以可以得出等式;②在①中,如果,,請(qǐng)直接用①題中的等式,求陰影部分的面積;(2)如圖3,兩個(gè)邊長(zhǎng)分別為,,的直角三角形和一個(gè)兩條直角邊都是的直角三角形拼成一個(gè)梯形,用“算兩次”的方法,探究,,之間的數(shù)量關(guān)系.-參考答案-一、單選題1、A【解析】【分析】根據(jù)勾股定理,求出FC=,令DE=x,在Rt中,EC2=,在Rt中,EC2==,代入求解即可.【詳解】解:由題意,得∠ECF=∠CDF=∠CDE=90°,CD=4m,=,由勾股定理,得FC=,EC2=,EC2=,∴=,令DE=x,則EF=x+8,∴,整理,得16x=32,解得x=2.故選:A.【考點(diǎn)】本題考查利用勾股定理求線段長(zhǎng),拓展一元一次方程,正確的運(yùn)算能力是解決問(wèn)題的關(guān)鍵.2、B【解析】【分析】折疊的性質(zhì)主要有:1.重疊部分全等;2.折痕是對(duì)稱軸,對(duì)稱點(diǎn)的連線被對(duì)稱軸垂直平分.由折疊的性質(zhì)可知,所以可求出∠AFB=90°,再直角三角形的性質(zhì)可知,所以,的長(zhǎng)可求,再利用勾股定理即可求出BC的長(zhǎng).【詳解】解:AB=AC,,故選B.【考點(diǎn)】本題考查了折疊的性質(zhì)、等腰直角三角形的判斷和性質(zhì)以及勾股定理的運(yùn)用,求出∠AFB=90°是解題的關(guān)鍵.3、A【解析】【分析】根據(jù)題意可知,的面積為,結(jié)合已知條件,根據(jù)完全平方公式變形求值即可.【詳解】解:中,,,,所對(duì)的邊分別為a,b,c,,∵,,∴,,故A正確.故選:A.【考點(diǎn)】本題主要考查了勾股定理,完全平方公式變形求值,解題的關(guān)鍵是將完全平方公式變形求出ab的值.4、D【解析】【分析】先畫出三角形,根據(jù)勾股定理和題目設(shè)好的未知數(shù)列出方程.【詳解】解:如圖,根據(jù)題意,,,設(shè)折斷處離地面的高度是x尺,即,根據(jù)勾股定理,,即.故選:D.【考點(diǎn)】本題考查勾股定理的方程思想,解題的關(guān)鍵是根據(jù)題意利用勾股定理列出方程.5、D【解析】【分析】分4是直角邊、4是斜邊兩種情況考慮,再根據(jù)勾股定理計(jì)算即可.【詳解】解:當(dāng)4是直角邊時(shí),斜邊==5;當(dāng)4是斜邊時(shí),另一條直角邊=;故選:D.【考點(diǎn)】本題考查的是勾股定理,如果直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.6、C【解析】【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點(diǎn)之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點(diǎn)A、C之間的最短距離為線段AC的長(zhǎng).在Rt△ADC中,∠ADC=90°,CD=AB=3,AD為底面半圓弧長(zhǎng),AD=π,∴AC=,故選C.【考點(diǎn)】本題考查了平面展開-最短路徑問(wèn)題,解題的關(guān)鍵是會(huì)將圓柱的側(cè)面展開,并利用勾股定理解答.7、B【解析】【分析】根據(jù)勾股定理求出AB的長(zhǎng),利用翻折得到AE=AB=10,DE=BD,求出CE,由勾股定理得到,列得,求出BD.【詳解】解:∵∠C=90°,AC=8,BC=6,∴,由翻折得AE=AB=10,DE=BD,∴CE=AE-AC=10-8=2,在Rt△CED中,,∴,解得BD=,故選:B.【考點(diǎn)】此題考查了勾股定理的應(yīng)用,翻折的性質(zhì),熟記勾股定理的計(jì)算公式是解題的關(guān)鍵.二、填空題1、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設(shè)未折斷的竹干長(zhǎng)為尺,根據(jù)題意可列方程為:.故答案為:.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問(wèn)題時(shí)勾股定理與方程的結(jié)合是解決實(shí)際問(wèn)題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.2、【解析】【分析】延長(zhǎng)DM交CB的延長(zhǎng)線于點(diǎn)首先證明,設(shè),利用勾股定理構(gòu)建方程求出x即可解決問(wèn)題.【詳解】延長(zhǎng)DM交CB的延長(zhǎng)線于點(diǎn)H,四邊形ABCD是菱形,,,,,,≌,,,,設(shè),,,,,,或舍棄,,故答案為.【考點(diǎn)】本題考查了菱形的性質(zhì)、勾股定理、線段的垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)等知識(shí),正確添加輔助線,構(gòu)造全等三角形解決問(wèn)題是解決本題的關(guān)鍵.3、36【解析】【分析】連接AC,先根據(jù)勾股定理求出AC的長(zhǎng)度,再根據(jù)勾股定理的逆定理判斷出△ACD的形狀,最后利用三角形的面積公式求解即可.【詳解】連接AC,如下圖所示:∵∠ABC=90°,AB=3,BC=4,∴AC=,在△ACD中,AC2+AD2=25+144=169=CD2,∴△ACD是直角三角形,∴S四邊形ABCD=AB?BC+AC?AD=×3×4+×5×12=36.【考點(diǎn)】本題考查了勾股定理及勾股定理的逆定理,正確作出輔助線是解題的關(guān)鍵.4、5【解析】【分析】根據(jù)角度轉(zhuǎn)換,得到三角形ADE是直角三角形,然后運(yùn)用勾股定理計(jì)算出DE的長(zhǎng).【詳解】∵∠B+∠C+∠BAC=180°,∠C=90°,∴∠B+∠BAC=90°.∵α+β=∠B,∴∠DAE=α+β+∠BAC==∠B+∠BAC=90°.∴△ADE是直角三角形.∴DE===5.【考點(diǎn)】本題主要考查到運(yùn)用勾股定理求長(zhǎng)度,說(shuō)明三角形ADE是直角三角形是解題的關(guān)鍵.5、6cm2【解析】【分析】先根據(jù)勾股定理得到AB=10cm,再根據(jù)折疊的性質(zhì)得到DC=DC′,BC=BC′=6cm,則AC′=4cm,設(shè)DC=xcm,在Rt△ADC′中根據(jù)勾股定理列方程求得x的值,然后根據(jù)三角形的面積公式計(jì)算即可.【詳解】∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),∴△BCD≌△BC′D,∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,∴AC′=AB-BC′=4cm,設(shè)DC=xcm,則AD=(8-x)cm,在Rt△ADC′中,AD2=AC′2+C′D2,即(8-x)2=x2+42,解得x=3,∵∠AC′D=90°,∴△ADC′的面積═×AC′×C′D=×4×3=6(cm2).考點(diǎn):折疊的性質(zhì),勾股定理點(diǎn)評(píng):折疊的性質(zhì):折疊前后兩圖形全等,即對(duì)應(yīng)角相等,對(duì)應(yīng)線段相等,對(duì)應(yīng)點(diǎn)的連線段被折痕垂直平分.6、x2?(x?3)2=82【解析】【分析】設(shè)繩索長(zhǎng)為x尺,根據(jù)勾股定理列出方程解答即可.【詳解】解:設(shè)繩索長(zhǎng)為x尺,根據(jù)題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出相應(yīng)方程是解題的關(guān)鍵.7、8【解析】【分析】過(guò)點(diǎn)A作AC⊥ON,根據(jù)題意可知AC的長(zhǎng)與200米相比較,發(fā)現(xiàn)受到影響,然后過(guò)點(diǎn)A作AD=AB=200米,求出BD的長(zhǎng)即可得出居民樓受噪音影響的時(shí)間.【詳解】解:如圖:過(guò)點(diǎn)A作AC⊥ON,AB=AD=200米,∵公路PQ上A處點(diǎn)距離O點(diǎn)240米,距離MN120米,∴AC=120米,當(dāng)火車到B點(diǎn)時(shí)對(duì)A處產(chǎn)生噪音影響,此時(shí)AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵144千米/小時(shí)=40米/秒,∴影響時(shí)間應(yīng)是:320÷40=8秒.故答案為:8.【考點(diǎn)】本題考查勾股定理的應(yīng)用.根據(jù)題意構(gòu)建直角三角形是解題關(guān)鍵.8、45°##45度【解析】【分析】取正方形網(wǎng)格中格點(diǎn)Q,連接PQ和BQ,證明∠AQB=90°,由勾股定理計(jì)算PQ=QB,進(jìn)而得到△QPB為等腰直角三角形,∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°即可求解.【詳解】解:取正方形網(wǎng)格中格點(diǎn)Q,連接PQ和BQ,如下圖所示:∴AE=PF,PE=QF,∠AEP=∠PFQ=90°,∴△APE≌△PQF(SAS),∴∠PAB=∠QPF,∵PF∥BE,∴∠PBA=∠BPF,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB,又QA2=22+42=20,QB2=22+12=5,AB2=52=25,∴QA2+QB2=20+5=25=AB2,∴△QAB為直角三角形,∠AQB=90°,∵PQ2=22+12=5=QB2,∴△PQB為等腰直角三角形,∴∠QPB=∠QBP=(180°-90°)÷2=45°,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°,故答案為:45°.【考點(diǎn)】本題考查了勾股定理及逆定理、三角形全等的判定等,熟練掌握勾股定理及逆定理是解決本類題的關(guān)鍵.三、解答題1、(1)證明見(jiàn)解析;(2),,之間的關(guān)系是.理由見(jiàn)解析.【解析】【分析】(1)根據(jù)折疊的性質(zhì)、平行的性質(zhì)及等角對(duì)等邊即可說(shuō)明;(2)根據(jù)折疊的性質(zhì)將AE、AB、BF都轉(zhuǎn)化到直角三角形中,由勾股定理可得,,之間的關(guān)系.【詳解】(1)由折疊的性質(zhì),得,,在長(zhǎng)方形紙片中,,∴,∴,∴,∴.(2),,之間的關(guān)系是.理由如下:由(1)知,由折疊的性質(zhì),得,,.在中,,所以,所以.【考點(diǎn)】本題主要考查了勾股定理,靈活利用折疊的性質(zhì)進(jìn)行線段間的轉(zhuǎn)化是解題的關(guān)鍵.2、,不符合規(guī)定【解析】【分析】根據(jù)勾股定理即可求解.【詳解】解:設(shè)且解得:商家這樣放廣告牌不符合規(guī)定.【考點(diǎn)】本題考查了勾股定理、一元一方程等內(nèi)容,解決問(wèn)題的關(guān)鍵在于理解題意,找到等量關(guān)系,列出方程.3、(1)見(jiàn)解析(2)40;41【解析】【分析】(1)利用勾股定理的逆定理證明即可.(2)利用勾股數(shù)的公式代入求值即可.(1)證明:,∴,,構(gòu)成勾股數(shù).(2)根據(jù)最小數(shù)為奇數(shù)時(shí),另兩個(gè)正整數(shù)為,,當(dāng)a=9時(shí),,,故答案為:40,41.【考點(diǎn)】本題考查了勾股定理逆定理,勾股數(shù)的探索,代入求值,熟練掌握勾股數(shù)是解題的關(guān)鍵.4、三角形為直角三角形,理由見(jiàn)解析【解析】【分析】這是一道有關(guān)勾股定理的逆定理、完全平方公式的解答題.把已知條件寫成三個(gè)完全平方式的和的形式,再由非負(fù)數(shù)的性質(zhì)求得三邊,根據(jù)勾股定理的逆定理即可判斷△ABC的形狀.【詳解】,,即.,,,,,.,,.,,該三角形為直角三角形.【考點(diǎn)】此題主要考查了勾股定理的逆定理、完全平方公式.此題的關(guān)鍵就是靈活掌握完全平方公式的特點(diǎn),用配方法進(jìn)行恒等變形,在恒等變形的過(guò)程中不要改變式子的值.5、(1)見(jiàn)解析;(2)AP的長(zhǎng)為或2或【解析】【分析】(1)利用AAS證明△ABP≌△PCD,得到AP=PD,由定義可知點(diǎn)P是△APD的準(zhǔn)外心;(2)先利用勾股定理計(jì)算AC=4,再進(jìn)行討論:當(dāng)P點(diǎn)在AB上,PA=PB,當(dāng)P點(diǎn)在AC上,PA=PC,易得對(duì)應(yīng)AP的值;當(dāng)P點(diǎn)在AC上,PB=PC,設(shè)AP=t,則PC=PB=4﹣x,利用勾股定理得到32+t2=(4﹣t)2,然后解方程得到此時(shí)AP的長(zhǎng).【詳解】(1)證明:∵∠ABP=∠APD=∠PCD=90°,∴∠APB+∠PAB=90°,∠APB+∠DPC=90°,∴∠PAB=∠DPC,在△ABP和△PCD中,,∴△ABP≌△PCD(AAS),∴AP=PD,∴點(diǎn)P是△APD的準(zhǔn)外心;(2)解:∵∠BAC=90°,BC=5,AB=3,∴AC4,當(dāng)P點(diǎn)在AB上,PA=PB,則APAB;當(dāng)P點(diǎn)在AC上,PA=PC,則APAC=2,當(dāng)P點(diǎn)在AC上,PB=PC,如圖2,設(shè)AP=t,則PC=PB=4﹣x,在Rt△ABP中,32+t2=(4﹣t)2,解得t,即此時(shí)AP,綜上所述,AP的長(zhǎng)為或2或.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),勾股定理及新定義的運(yùn)用能力.理解題中給的定義是解題的關(guān)鍵.6、(1)BD=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明見(jiàn)解析.【解析】【

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論