中考數(shù)學(xué)總復(fù)習(xí)《 圓》模擬試題及參考答案詳解(滿分必刷)_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》模擬試題及參考答案詳解(滿分必刷)_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》模擬試題及參考答案詳解(滿分必刷)_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》模擬試題及參考答案詳解(滿分必刷)_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》模擬試題及參考答案詳解(滿分必刷)_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《圓》模擬試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、已知扇形的半徑為6,圓心角為.則它的面積是(

)A. B. C. D.2、如圖,是的直徑,弦于點(diǎn),,,則的長為(

)A.4 B.5 C.8 D.163、已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是()A.30° B.60° C.30°或150° D.60°或120°4、已知圓內(nèi)接正三角形的面積為,則該圓的內(nèi)接正六邊形的邊心距是()A. B. C. D.5、已知:如圖,PA,PB分別與⊙O相切于A,B點(diǎn),C為⊙O上一點(diǎn),∠ACB=65°,則∠APB等于()A.65° B.50° C.45° D.40°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,正方形ABCD的邊長為2a,E為BC邊的中點(diǎn),的圓心分別在邊AB、CD上,這兩段圓弧在正方形內(nèi)交于點(diǎn)F,則E、F間的距離為.2、如圖,在⊙O中,CD是直徑,弦ABCD,垂足為E,連接BC,若AB=cm,,則圓O的半徑為_______cm.3、如圖,把一個(gè)圓錐沿母線OA剪開,展開后得到扇形AOC,已知圓錐的高h(yuǎn)為12cm,OA=13cm,則扇形AOC中的長是_____cm(計(jì)算結(jié)果保留π).4、如圖,一下水管道橫截面為圓形,直徑為100cm,下雨前水面寬為60cm,一場大雨過后,水面寬為80cm,則水位上升______cm.5、已知圓錐的高為4cm,母線長為5cm,則圓錐的側(cè)面積為_____cm2.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,已知的直徑為,于點(diǎn),與相交于點(diǎn),在上取一點(diǎn),使得.(1)求證:是的切線;(2)填空:①當(dāng),時(shí),則___________.②連接,當(dāng)?shù)亩葦?shù)為________時(shí),四邊形為正方形.2、如圖,內(nèi)接于,,,則的直徑等于多少?3、如圖,半徑為6的⊙O與Rt△ABC的邊AB相切于點(diǎn)A,交邊BC于點(diǎn)C,D,∠B=90°,連接OD,AD.(1)若∠ACB=20°,求的長(結(jié)果保留).(2)求證:AD平分∠BDO.4、如圖,,比較與的長度,并證明你的結(jié)論.5、如圖,AB為⊙O的直徑,C、D為⊙O上的兩個(gè)點(diǎn),==,連接AD,過點(diǎn)D作DE⊥AC交AC的延長線于點(diǎn)E.(1)求證:DE是⊙O的切線.(2)若直徑AB=6,求AD的長.-參考答案-一、單選題1、D【解析】【分析】已知扇形的半徑和圓心角度數(shù)求扇形的面積,選擇公式直接計(jì)算即可.【詳解】解:.故選:D【考點(diǎn)】本題考查扇形面積公式的知識(shí)點(diǎn),熟知扇形面積公式及適用條件是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)垂徑定理得出CM=DM,再由已知條件得出圓的半徑為5,在Rt△OCM中,由勾股定理得出CM即可,從而得出CD.【詳解】解:∵AB是⊙O的直徑,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,在Rt△OCM中,OM2+CM2=OC2,∴CM==4,∴CD=8.故選:C.【考點(diǎn)】本題考查了垂徑定理,圓周角定理以及勾股定理,掌握定理的內(nèi)容并熟練地運(yùn)用是解題的關(guān)鍵.3、D【解析】【分析】由圖可知,OA=10,OD=5.根據(jù)特殊角的三角函數(shù)值求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠E的度數(shù)即可.【詳解】解:由圖可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°即弦AB所對的圓周角的度數(shù)是60°或120°,故選D.【考點(diǎn)】本題考查了圓周角定理、圓內(nèi)接四邊形的對角互補(bǔ)、解直角三角形的應(yīng)用等,正確畫出圖形,熟練應(yīng)用相關(guān)知識(shí)是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)題意可以求得半徑,進(jìn)而解答即可.【詳解】因?yàn)閳A內(nèi)接正三角形的面積為,所以圓的半徑為,所以該圓的內(nèi)接正六邊形的邊心距×sin60°=×=1,故選B.【考點(diǎn)】本題考查正多邊形和圓,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的圖形的邊心距.5、B【解析】【分析】連接OA,OB.根據(jù)圓周角定理和四邊形內(nèi)角和定理求解即可.【詳解】連接OA,OB,∵PA、PB切⊙O于點(diǎn)A、B,∴∠PAO=∠PBO=90°,由圓周角定理知,∠AOB=2∠ACB=130°,∴∠APB=360°﹣∠PAO﹣∠PBO﹣∠AOB=360°﹣90°﹣90°﹣130°=50°.故選:B.【考點(diǎn)】本題考查了切線的性質(zhì)、圓周角定理、以及四邊形的內(nèi)角和為360度.二、填空題1、a.【解析】【分析】作DE的中垂線交CD于G,則G為的圓心,H為的圓心,連接EF,GH,交于點(diǎn)O,連接GF,F(xiàn)H,HE,EG,依據(jù)勾股定理可得GE=FG=a,根據(jù)四邊形EGFH是菱形,四邊形BCGH是矩形,即可得到Rt△OEG中,OE=a,即可得到EF=a.【詳解】如圖,作DE的中垂線交CD于G,則G為的圓心,同理可得,H為的圓心,連接EF,GH,交于點(diǎn)O,連接GF,F(xiàn)H,HE,EG,設(shè)GE=GD=x,則CG=2a-x,CE=a,Rt△CEG中,(2a-x)2+a2=x2,解得x=a,∴GE=FG=a,同理可得,EH=FH=a,∴四邊形EGFH是菱形,四邊形BCGH是矩形,∴GO=BC=a,∴Rt△OEG中,OE=,∴EF=a,故答案為a.【考點(diǎn)】本題主要考查了正方形的性質(zhì)以及相交兩圓的性質(zhì),相交兩圓的連心線(經(jīng)過兩個(gè)圓心的直線),垂直平分兩圓的公共弦.注意:在習(xí)題中常常通過公共弦在兩圓之間建立聯(lián)系.2、2【解析】【詳解】解:如圖,連接OB∵∴∵在⊙O中,CD是直徑,弦ABCD∴AE=BE,且△OBE是等腰直角三角形∵AB=cm∴BE=cm∴OB=2cm故答案為:2.【考點(diǎn)】本題考查了垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱藞A周角定理和等腰直角三角形的性質(zhì).3、10π【解析】【分析】根據(jù)的長就是圓錐的底面周長即可求解.【詳解】解:∵圓錐的高h(yuǎn)為12cm,OA=13cm,∴圓錐的底面半徑為=5cm,∴圓錐的底面周長為10πcm,∴扇形AOC中的長是10πcm,故答案為10π.【考點(diǎn)】本題考查了圓錐的計(jì)算,解題的關(guān)鍵是了解圓錐的底面周長等于展開扇形的弧長.4、10或70【解析】【分析】分水位在圓心下以及圓心上兩種情況,畫出符合題意的圖形進(jìn)行求解即可得.【詳解】如圖,作半徑于C,連接OB,由垂徑定理得:=AB=×60=30cm,在中,,當(dāng)水位上升到圓心以下時(shí)

水面寬80cm時(shí),則,水面上升的高度為:;當(dāng)水位上升到圓心以上時(shí),水面上升的高度為:,綜上可得,水面上升的高度為30cm或70cm,故答案為:10或70.【考點(diǎn)】本題考查了垂徑定理的應(yīng)用,掌握垂徑定理、靈活運(yùn)用分類討論的思想是解題的關(guān)鍵.5、15π【解析】【分析】首先利用勾股定理求得圓錐的底面半徑,然后利用圓錐的側(cè)面積=π×底面半徑×母線長,把相應(yīng)數(shù)值代入即可求解.【詳解】解:根據(jù)題意,圓錐的底面圓的半徑==3(cm),所以圓錐的側(cè)面積=π×3×5=15π(cm2).故答案為:15π.【考點(diǎn)】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長,圓錐的側(cè)面積等于“π×底面半徑×母線長”.三、解答題1、(1)詳見解析;(2)①10;②【解析】【分析】(1)連接OD,證明,得到,根據(jù)切線的判定定理證明;(2)①利用等腰三角形的性質(zhì)證明E是AC中點(diǎn),再利用中位線定理得到,再用勾股定理求出OE,從而得到BC;②添加條件,先通過四個(gè)邊相等的四邊形是菱形,證明四邊形AODE是菱形,再加上一個(gè)直角就是正方形了.【詳解】解:(1)證明:如圖,連接,在和中,,∴,∴,∵,∴,∵,OD是半徑,∴DE是的切線;(2)①證明:∵,∴,∵,∴,∵,∴,∴,∴,∵,∴,即E是AC中點(diǎn),∵O是AB中點(diǎn),∴,在中,,∴BC=2OE=10,故答案是:10;②當(dāng)時(shí),四邊形AODE為正方形,證明:∵,,∴是等腰直角三角形,∴AB=AC,由(2)得AO=AE,∵AO=DO=AE=DE,∴四邊形AODE是菱形,∵,∴四邊形AODE是正方形,故答案是:.【考點(diǎn)】本題考查切線的證明,三角形中位線定理,正方形的證明,解題的關(guān)鍵是熟練掌握這些幾何的性質(zhì)定理并結(jié)合題目條件進(jìn)行證明.2、12【解析】【分析】連接OB、OC,如圖,利用圓周角定理得到∠BOC=60°,則可判斷△OBC為等邊三角形,從而得到OB=6.【詳解】解:連接OB、OC,如圖,∵∠BOC=2∠BAC=2×30°=60°,而OB=OC,∴△OBC為等邊三角形,∴OB=BC=6,∴⊙O的直徑等于12.故答案為:12.【考點(diǎn)】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點(diǎn),叫做三角形的外心.也考查了圓周角定理,掌握這些知識(shí)點(diǎn)是解題關(guān)鍵.3、(1)(2)見解析【解析】【分析】(1)連接,由,得,由弧長公式即得的長為;(2)根據(jù)切于點(diǎn),,可得,有,而,即可得,從而平分.(1)解:連接OA,∵∠ACB=20°,∴∠AOD=40°,∴,.(2)證明:,,切于點(diǎn),,,,,,平分.【考點(diǎn)】本題考查與圓有關(guān)的計(jì)算及圓的性質(zhì),解題的關(guān)鍵是掌握弧長公式及圓的切線的性質(zhì).4、=,見解析.【解析】【分析】根據(jù)圓心角、弧、弦的關(guān)系,由AD=BC解得=,繼而得到=.【詳解】解:=,證明如下:∵AD=BC,∴=,∴+=+,即=.【考點(diǎn)】本題考查圓心角、弧、弦的關(guān)系,在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等.5、(1)見解析;(2)3【解析】【分析】(1)連接OD,根據(jù)已知條件得到∠BOD=180°=60°,根據(jù)等腰三角形的性質(zhì)得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到結(jié)論;(2)連接BD,根據(jù)圓周角定理得到∠ADB=90°,解直角三角形即可得到結(jié)論.【詳解】(1)證明:連接OD,∵,∴∠BOD=180°=60°,∵,∴∠EAD=∠DA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論