版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省清鎮(zhèn)市中考數學真題分類(勾股定理)匯編定向測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點E為AB中點,沿過點E的直線折疊,使點B與點A重合,折痕現交于點F,已知EF=,則BC的長是()A. B.3 C.3 D.32、如圖,△ABC中,,以其三邊分別向外側作正方形,然后將整個圖形放置于如圖所示的長方形中,若要求圖中兩個陰影部分面積之和,則只需知道(
)A.以BC為邊的正方形面積 B.以AC為邊的正方形面積C.以AB為邊的正方形面積 D.△ABC的面積3、如圖,點,在直線的同側,到的距離,到的距離,已知,是直線上的一個動點,記的最小值為,的最大值為,則的值為(
)A.160 B.150 C.140 D.1304、已知直角三角形紙片的兩條直角邊長分別為m和n(m<n),過銳角頂點把該紙片剪成兩個三角形,若這兩個三角形都為等腰三角形,則()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=05、如圖是一個三級臺階,它的每一級的長、寬和高分別為9、3和1,A和B是這個臺階兩個相對的端點,A點有一只螞蟻,想到B點去吃可口的食物.則這只螞蟻沿著臺階面爬行的最短路程是(
)A.6 B.8 C.9 D.156、已知直角三角形的兩條邊長分別是3和4,那么這個三角形的第三條邊的長為(
)A.5 B.25 C. D.5或7、若直角三角形的三邊長分別為2,4,x,則x的可能值有(
)A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、等腰△ABC中,AB=AC=10cm,BC=12cm,則BC邊上的高是_______cm.2、如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點D在AB上,AD=AC,AF⊥CD交CD于點E,交CB于點F,則CF的長是________________.3、《九章算術》中有一道“引葭赴岸”問題:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問水深,葭長各幾何?”題意是:有一個池塘,其底面是邊長為10尺的正方形,一棵蘆葦AB生長在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦的頂部B恰好碰到岸邊的B'(如圖).則蘆葦長_____尺.4、如圖,CD是△ABC的中線,將△ACD沿CD折疊至,連接交CD于點E,交CB于點F,點F是的中點.若的面積為12,,則點F到AC的距離為______.5、《九章算術》中有“折竹抵地”問題:“今有竹高一丈,末折抵地,去根三尺,問折者高幾何?”題意是:有一根竹子原來高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問折斷處離地面多高?如圖,設折斷處距離地面x尺,根據題意,可列方程為______.6、我國古代數學著作《九章算術》中的一個問題:一根竹子高1丈(1丈=10尺),折斷后頂端落在離竹子底端3尺處,問折斷處離地面的高度為多少尺?如圖,設折斷處離地面的高度為x尺,根據題意,可列出關于x方程為:__________.7、已知a、b、c是一個三角形的三邊長,如果滿足,則這個三角形的形狀是_______.8、如圖,在一次綜合實踐活動中,小明將一張邊長為的正方形紙片,沿著邊上一點與點的連線折疊,點是點的對應點,延長交于點,經測量,,則的面積為______.三、解答題(7小題,每小題10分,共計70分)1、如圖,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,點A,C,D依次在同一直線上,且AB∥DE.(1)求證:△ABC≌△DCE;(2)連結AE,當BC=5,AC=12時,求AE的長.2、在一條東西走向河的一側有一村莊C,河邊原有兩個取水點A,B,其中AB=AC,由于種種原因,由C到A的路現在已經不通了,某村為方便村民取水決定在河邊新建一個取水點H(A,H,B在一條直線上),并新修一條路CH,測得CB=3千米,CH=2.4千米,HB=1.8千米.(1)問CH是不是從村莊C到河邊的最近路,請通過計算加以說明;(2)求原來的路線AC的長.3、如圖,在正方形ABCD中,E是邊AB上的一動點,點F在邊BC的延長線上,且,連接DE,DF.(1)求證:;(2)連接EF,取EF中點G,連接DG并延長交BC于H,連接BG.①依題意,補全圖形;②求證:;③若,用等式表示線段BG,HG與AE之間的數量關系,請直接寫出結論.4、如圖,將RtABC紙片沿AD折疊,使直角頂點C與AB邊上的點E重合,若AB=10cm,AC=6cm,求線段BD的長.5、如圖,已知半徑為5的⊙M經過x軸上一點C,與y軸交于A、B兩點,連接AM、AC,AC平分∠OAM,AO+CO=6(1)判斷⊙M與x軸的位置關系,并說明理由;(2)求AB的長;(3)連接BM并延長交圓M于點D,連接CD,求直線CD的解析式.6、閱讀下面材料:小明遇到這樣一個問題:∠MBN=30°,點A為射線BM上一點,且AB=4,點C為射線BN上動點,連接AC,以AC為邊在AC右側作等邊三角形ACD,連接BD.當AC⊥BN時,求BD的長.小明發(fā)現:以AB為邊在左側作等邊三角形ABE,連接CE,能得到一對全等的三角形,再利用∠EBC=90°,從而將問題解決(如圖1).請回答:(1)在圖1中,小明得到的全等三角形是△≌△;BD的長為.(2)動點C在射線BN上運動,當運動到AC時,求BD的長;(3)動點C在射線BN上運動,求△ABD周長最小值.7、在邊長為8的等邊ABC中,點D是邊AB上的一動點,點E在邊AC上,且CE=2AD,射線DE繞點D順時針旋轉60°交BC邊于F.(1)如圖1,求證:∠AED=∠BDF;(2)如圖2,在射線DF上取DP=DE,連接BP,①求∠DBP的度數;②取邊BC的中點M,當PM取最小值時,求AD的長.-參考答案-一、單選題1、B【解析】【分析】折疊的性質主要有:1.重疊部分全等;2.折痕是對稱軸,對稱點的連線被對稱軸垂直平分.由折疊的性質可知,所以可求出∠AFB=90°,再直角三角形的性質可知,所以,的長可求,再利用勾股定理即可求出BC的長.【詳解】解:AB=AC,,故選B.【考點】本題考查了折疊的性質、等腰直角三角形的判斷和性質以及勾股定理的運用,求出∠AFB=90°是解題的關鍵.2、D【解析】【分析】如圖所示,過點C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,證明△ADE≌△CAN得到,AE=CN同理可證△BGH≌△CBN,得到,BH=CN,則,即可推出由此即可得到答案.【詳解】解:如圖所示,過點C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,∴∠CNA=∠DEA=∠DAC=90°,∴∠DAE+∠EDA=∠DAE+∠CAN=90°,∴∠ADE=∠CAN,又∵AD=CA,∴△ADE≌△CAN(AAS),∴,AE=CN同理可證△BGH≌△CBN,∴,BH=CN∴,∴,∴只需要知道△ABC的面積的面積即可求出陰影部分的面積,故選D【考點】本題主要考查了全等三角形的性質與判定,解題的關鍵在于能夠正確作出輔助線,構造全等三角形.3、A【解析】【分析】作點A關于直線MN的對稱點,連接交直線MN于點P,則點P即為所求點,過點作直線,在根據勾股定理求出線段的長,即為PA+PB的最小值,延長AB交MN于點,此時,由三角形三邊關系可知,故當點P運動到時最大,過點B作由勾股定理求出AB的長就是的最大值,代入計算即可得.【詳解】解:如圖所示,作點A關于直線MN的對稱點,連接交直線MN于點P,則點P即為所求點,過點作直線,∵,,,∴,,,在中,根據勾股定理得,∴,即PA+PB的最小值是;如圖所示,延長AB交MN于點,∵,,∴當點P運動到點時,最大,過點B作,則,∴,在中,根據勾股定理得,,∴,即,∴,故選A.【考點】本題考查了最短線路問題和勾股定理,解題的關鍵是熟知兩點之間線段最短及三角形的三邊關系.4、C【解析】【分析】如圖,根據等腰三角形的性質和勾股定理可得m2+m2=(n-m)2,整理即可求解【詳解】m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故選C.5、D【解析】【分析】此類題目只需要將其展開便可直觀的得出解題思路.將臺階展開得到的是一個矩形,螞蟻要從B點到A點的最短距離,便是矩形的對角線,利用勾股定理即可解出答案.【詳解】解:如圖,將臺階展開,因為AC=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以螞蟻爬行的最短線路為15.故選:D.【考點】本題考查了勾股定理的應用,掌握勾股定理的應用并能得出平面展開圖是解題的關鍵.6、D【解析】【分析】分情況討論:①當邊長為4的邊作斜邊時;②當邊長為4的邊作直角邊時,利用勾股定理分別求解即可.【詳解】解:當邊長為4的邊作斜邊時,第三條邊的長度為;當邊長為4的邊作直角邊時,第三條邊的長度為;綜上分析可知,這個三角形的第三條邊的長為5或,故D正確.故選:D.【考點】本題主要考查了勾股定理,掌握分類討論的思想是解題的關鍵.7、B【解析】【詳解】分析:x可為斜邊也可為直角邊,因此解本題時要對x的取值進行討論.解答:解:當x為斜邊時,x2=22+42=20,所以x=2;當4為斜邊時,x2=16-4=12,x=2.故選B.點評:本題考查了勾股定理的應用,注意要分兩種情況討論.二、填空題1、8【解析】【詳解】如圖,AD是BC邊上的高線.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案為8.2、1.5【解析】【分析】連接DF,由勾股定理求出AB=5,由等腰三角形的性質得出∠CAF=∠DAF,由SAS證明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,設CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【詳解】連接DF,如圖所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,設CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.5;∴CF=1.5;故答案為1.5.【考點】本題考查了勾股定理、全等三角形的判定與性質、等腰三角形的性質,證明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解決問題的關鍵.3、13【解析】【分析】將其轉化為數學幾何圖形,如圖所示,根據題意,可知B'C=5尺,設水深AC=x尺,則蘆葦長(x+1)尺,根據勾股定理建立方程,求出的方程的解即可得到蘆葦的長和水深.【詳解】解:設水深x尺,則蘆葦長(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故蘆葦長13尺,故答案為:13【考點】本題考查勾股定理,和列方程解決實際問題,能夠在實際問題中找到直角三角形并應用勾股定理是解決本題的關鍵.4、【解析】【分析】過點F作FH⊥AC于點H,由翻折的性質可知S△AA'D=24,由D為AB的中點,則S△AA'B=2S△AA'D=48,得AA'=12,再通過AAS證明△A'BF≌△ECF,得CE=A'B=8,在Rt△CAE中,由勾股定理求出AC的長,最后通過面積法即可求出FH的長.【詳解】解:如圖,過點F作FH⊥AC于點H,根據翻折的性質得:AD=A'D,AA'⊥CD,AE=A'E,∵CD是△ABC的中線,∴CD=BD,∴AD=BD=A'D,∴∠AA'B=90°,又∵S△A'DE=12,∴S△ADE=12,∴S△ADA'=24,又∵D為AB的中點,∴S△AA'B=2S△AA'D=48,即×AA′×A′B=48,∴AA'=12,又∵F為A'E的中點,∴A'F=EF,在△A'BF與△ECF中,,∴△A'BF≌△ECF(AAS),∴CE=A'B=8,∵AA'=2A'E,A'E=2EF=6,∴EF=3,AF=9,在Rt△CAE中,由勾股定理得:CA==10,在△CAF中,CA?HF=AF?CE,∴HF==,即點F到AC的距離為,故答案為:.【考點】本題主要考查了翻折的性質,全等三角形的判定與性質,勾股定理等知識,運用等積法求垂線段的長是解題的關鍵.5、【解析】【分析】根據勾股定理即可得出結論.【詳解】解:設未折斷的竹干長為尺,根據題意可列方程為:.故答案為:.【考點】本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時勾股定理與方程的結合是解決實際問題常用的方法,關鍵是從題中抽象出勾股定理這一數學模型,畫出準確的示意圖.領會數形結合的思想的應用.6、【解析】【分析】設折斷處離地面的高度為x尺,根據勾股定理列出方程即可【詳解】解:設折斷處離地面的高度為x尺,根據題意可得:故答案為:【考點】本題考查了勾股定理的應用,掌握勾股定理是解題的關鍵.7、直角三角形【解析】【分析】根據絕對值、完全平方數和算數平方根的非負性,可求解出a、b、c的值,再根據勾股定理的逆定理判斷即可.【詳解】解:由題意得:,解得:,∵,∴三角形為直角三角形.故答案為直角三角形.【考點】本題主要考查了非負數的性質和勾股定理的逆定理,運用非負數的性質求出a、b、c的值是解題的關鍵.8、##【解析】【分析】根據題意,,進而求得,勾股定理求得,即可求得的面積.【詳解】解:折疊,,,,∵四邊形是正方形∴中..故答案為:【考點】本題考查了折疊的性質,勾股定理,掌握勾股定理是解題的關鍵.三、解答題1、(1)見解析;(2)13【解析】【分析】根據題意可知,本題考查平行的性質,全等三角形的判定和勾股定理,根據判定定理,運用兩直線平行內錯角相等再通過AAS以及勾股定理進行求解.【詳解】解:(1)∵∴在△ABC和△DCE中∴△ABC≌△DCE(2)由(1)可得BC=CE=5在直角三角形ACE中【考點】本題考查平行的性質,全等三角形的判定和勾股定理,熟練掌握判定定理運用以及平行的性質是解決此類問題的關鍵.2、(1)是,理由見解析;(2)2.5米.【解析】【分析】(1)先根據勾股定理逆定理證得Rt△CHB是直角三角形,然后根據點到直線的距離中,垂線段最短即可解答;(2)設AC=AB=x,則AH=x-1.8,在Rt△ACH中,根據勾股定理列方程求得x即可.【詳解】(1)∵,即,∴Rt△CHB是直角三角形,即CH⊥BH,∴CH是從村莊C到河邊的最近路(點到直線的距離中,垂線段最短);(2)設AC=AB=x,則AH=x-1.8,∵在Rt△ACH,∴,即,解得x=2.5,∴原來的路線AC的長為2.5米.【考點】本題主要考查了勾股定理的應用,靈活應用勾股定理的逆定理和定理是解答本題的關鍵.3、(1)見解析(2)①見解析;②見解析;③BG2+HG2=4AE2.【解析】【分析】(1)證△ADE≌△CDF(SAS),得∠ADE=∠CDF,再證∠EDF=90°,即可得出結論;(2)①依題意,補全圖形即可;②由直角三角形斜邊上的中線性質得DG=EF,BG=EF,即可得出結論;③先證△DEF是等腰直角三角形,得∠DEG=45°,再證DG⊥EF,DG=EF=EG,BG=EF=EG=FG,得∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,然后證△CDH≌△CDF(ASA),得CH=CF,再由勾股定理即可求解.(1)證明:∵四邊形ABCD是正方形,∴AD=CD,∠A=∠B=∠BCD=∠ADC=90°,∴∠DCF=90°,即∠A=∠DCF,又∵AE=CF,∴△ADE≌△CDF(SAS),∴∠ADE=∠CDF,∵∠ADE+∠CDE=90°,∴∠CDF+∠CDE=90°,即∠EDF=90°,∴DE⊥DF;(2)①解:依題意,補全圖形如圖所示:②證明:由(1)可知,△DEF和△BEF都是直角三角形,∵G是EF的中點,∴DG=EF,BG=EF,∴BG=DG;③BG2+HG2=4AE2,證明:由(1)可知,△ADE≌△CDF,DE⊥DF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DEG=45°,∵G為EF的中點,∴DG⊥EF,DG=EF=EG,BG=EF=EG=FG,∴∠EGD=∠HGF=∠DGF=90°,∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,∵∠EGB=45°,∴∠GBF=∠GFB=22.5°,∵∠DHF+∠HFG=∠DHF+∠CDH=90°,∴∠HFG=∠CDH=22.5°,∴∠CDF=∠GDF?∠HDC=22.5°=∠CDH,又∵∠DCH=∠DCF=90°,CD=CD,∴△CDH≌△CDF(ASA),∴CH=CF,在Rt△GHF中,由勾股定理得:GF2+HG2=HF2,∵HF=2CF=2AE,GF=BG,∴BG2+HG2=(2AE)2,∴BG2+HG2=4AE2.【考點】本題是四邊形綜合題,考查了正方形的性質、全等三角形的判定與性質、等腰直角三角形的判定與性質、直角三角形斜邊上的中線性質、等腰三角形的性質等知識;熟練掌握正方形的性質和等腰直角三角形的判定與性質,證明三角形全等是解題的關鍵,屬于中考??碱}型.4、5【解析】【分析】利用勾股定理先求出的值,根據折疊的性質可得出,,,設,列方程求解即可.【詳解】解:由題意可知:,,則,,,設,則,∴解方程得:因此,的長為所以,【考點】本題考查的知識點是勾股定理的應用,根據題意構造直角三角形是解此題的關鍵.5、(1)⊙M與x軸相切,理由見解析(2)6(3)【解析】【分析】(1)連接CM,證CM⊥x即可得出結論;(2)過點M作MN⊥AB于N,證四邊形OCMN是矩形,得MN=OC,ON=OM=5,設AN=x,則OA=5-x,MN=OC=6-(5-x)=1+x,利用勾股定理求出x值,即可求得AN值,再由垂徑定理得AB=2AN即可求解;(3)連接BC,CM,過點D作DP⊥CM于P,得直角三角形BCD,由(2)知:AB=6,OA=2,OC=4,所以OB=8,C(4,0),在Rt△BOC中,∠BOC=90°,由勾股定理,求得BC=,在Rt△BCD中,∠BCD=90°,由勾股定理,即可求得CD,在Rt△CPD和在Rt△MPD中,由勾股定理,求得CP=2,PD=4,從而得出點D坐標,然后用待定系數法求出直線CD解析式即可.(1)解:⊙M與x軸相切,理由如下:連接CM,如圖,∵MC=MA,∴∠MCA=∠MAC,∵AC平分∠OAM,∴∠MAC=∠OAC,∴∠MCA=∠OAC,∵∠OAC+∠ACO=90°,∴∠MCO=∠MCA+∠ACO=∠OAC+∠ACO=90°,∵MC是⊙M的半徑,點C在x軸上,∴⊙M與x軸相切;(2)解:如圖,過點M作MN⊥AB于N,由(1)知,∠MCO=90°,∵MN⊥AB于N,∴∠MNO=90°,AB=2AN,∵∠CON=90°,∴∠CMN=90°,∴四邊形OCMN是矩形,∴MN=OC,ON=CM=5,∵OA+OC=6,設AN=x,
∴OA=5-x,MN=OC=6-(5-x)=1+x,在Rt△MNA中,∠MNA=90°,由勾股定理,得x2+(1+x)2=52,解得:x1=3,x2=-4(不符合題意,舍去),∴AN=3,∴AB=2AN=6;(3)解:如圖,連接BC,CM,過點D作DP⊥CM于P,由(2)知:AB=6,OA=2,OC=4,∴OB=8,C(4,0)在Rt△BOC中,∠BOC=90°,由勾股定理,得BC=,∵BD是⊙M的直徑,∴∠BCD=90°,BD=10,在Rt△BCD中,∠BCD=90°,由勾股定理,得CD=,即CD2=20,在Rt△CPD中,由勾股定理,得PD2=CD2-CP2=20-CP2,在Rt△MPD中,由勾股定理,得PD2=MD2-MP2=MD2-(MC-CP)2=52-(5-CP)2=10CP-CP2,∴20-CP2=10CP-CP2,
∴CP=2,∴PD2=20-CP2=20-4=16,∴PD=4,即D點橫坐標為OC+PD=4+4=8,∴D(8,-2),設直線CD解析式為y=kx+b,把C(4,0),D(8,-2)代入,得,解得:,∴直線CD的解析式為:.【考點】本題考查直線與圓相切的判定,勾股定理,圓周角定理的推論,垂徑定理,待定系數法求一次函數解析式,熟練掌握直線與圓相切的判定、待定系數法求一次函數解析式的方法是解題的關鍵.6、(1)ABD,ACE,;(2)BD的長為;(3)+4.【解析】【分析】(1)根據SAS可證△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的長度;(2)作AH⊥BC于點H,以AB為邊在左側作等邊△ABE,連接CE,求出BH,HC即BC的長度,再利用勾股定理即可求出CE的長度,由(1)知BD=CE,據此得解;(3)作AH⊥BC于點H,以AB為邊在左側作等邊△ABE,延長EB至F,使BF=EB,連接AF交BN于C',連接EC',此時BD+AC'有最小值即為AF,此時△ABD周長=AF+AB最小,求出AF即可.(1)解:∵△ACD和△ABE是等邊三角形,∴∠EAB=∠DAC=60°,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△ABD和△AEC中,,∴△ABD≌△ACE(SAS),∴BD=CE,∵AB=4,∠MBN=30°,∴AC=2,∴BC=,∴BD=CE=,故答案為:ABD,ACE,;(2)解:如下圖,作AH⊥BC于點H,以AB為邊在左側作等邊△ABE,連接CE,∵AB=4,∠MAN=30°,∴AH=2,BH=,∵AC=,∴HC=,∴BC=BH+HC=+=,∴CE=,由(1)可知BD=CE,∴此時BD的長為;(3)解:如圖,以AB為邊在左側作等邊△ABE,延長EB至F,使BF=EB,連接AF交BN于C',連接EC',∵EC'=FC'=BD,∴此
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于《洛神賦圖》圖像敘事的空間轉譯研究
- 陜西兵馬俑遺產概述
- 2025年政府專職消防文員招錄考試筆試參考題庫選擇題50題及答案
- 2025年醫(yī)院三基知識考試試題庫及答案(共120題)
- 功能食品選擇題庫及答案
- 2025年六語下冊單元試卷及答案
- 《植入式靜脈給藥裝置護理技術》專業(yè)解讀2026
- 2025年健康課素養(yǎng)測試題及答案
- 廟會出租合同范本
- 河南醫(yī)學招聘考試題目及答案
- 2024年移動互聯網行業(yè)白皮書-七麥數據
- 拜占庭歷史與文化知到智慧樹章節(jié)測試課后答案2024年秋南開大學
- etc解除車牌占用委托書
- 2024年秋江蘇開放大學數據挖掘技術060734形考作業(yè)1-3
- JT-T-1201-2018帶式收油機行業(yè)標準
- DZ∕T 0207-2020 礦產地質勘查規(guī)范 硅質原料類(正式版)
- 成人住院患者跌倒風險評估及預防
- (正式版)HGT 4339-2024 機械設備用涂料
- 口袋公園設計方案
- 2024年重慶水務集團招聘筆試參考題庫含答案解析
- 生產委托加工合同中英文版
評論
0/150
提交評論