版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》綜合訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、下列語(yǔ)句中正確的是()A.斜邊和一銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等B.有兩邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等C.有兩個(gè)角對(duì)應(yīng)相等的兩個(gè)直角三角形全等D.有一直角邊和一銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等2、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(diǎn)(點(diǎn)D與A,B不重合),連結(jié)CD,將線段CD繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段CE,連結(jié)DE交BC于點(diǎn)F,連接BE.當(dāng)AD=BF時(shí),∠BEF的度數(shù)是()A.45° B.60° C.62.5° D.67.5°3、如圖,在梯形中,,,,那么下列結(jié)論不正確的是()A. B.C. D.4、如圖,矩形ABCD中,對(duì)角線AC的垂直平分線EF分別交BC,AD于點(diǎn)E,F(xiàn),若BE=3,AF=5,則AC的長(zhǎng)為(
)A. B. C.10 D.85、如圖,在中,,D是上一點(diǎn),于點(diǎn)E,,連接,若,則等于(
)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在矩形ABCD中,AB=8cm,AD=12cm,點(diǎn)P從點(diǎn)B出發(fā),以2cm/s的速度沿BC邊向點(diǎn)C運(yùn)動(dòng),到達(dá)點(diǎn)C停止,同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以vcm/s的速度沿CD邊向點(diǎn)D運(yùn)動(dòng),到達(dá)點(diǎn)D停止,規(guī)定其中一個(gè)動(dòng)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).當(dāng)v為_(kāi)_____時(shí),△ABP與△PCQ全等.2、如圖,點(diǎn),,在同一直線上,,,,,若線段與線段的長(zhǎng)度之比為,則線段與線段的長(zhǎng)度之比為_(kāi)_____.3、如圖,MN∥PQ,AB⊥PQ,點(diǎn)A,D,B,C分別在直線MN和PQ上,點(diǎn)E在AB上,AD+BC=7,AD=EB,DE=EC,則AB=_____.4、如圖,BE⊥AC,垂足為D,且AD=CD,BD=ED.若∠ABC=54°,則∠E=________°.5、如圖,在中,,AD是的角平分線,過(guò)點(diǎn)D作,若,則______.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在中,D是邊上的點(diǎn),,垂足分別為E,F(xiàn),且.求證:.2、如圖,點(diǎn)B、C、D在同一直線上,△ABC、△ADE是等邊三角形,CE=5,CD=2(1)證明:△ABD≌△ACE;(2)求∠ECD的度數(shù);(3)求AC的長(zhǎng).3、如圖所示,點(diǎn)M是線段AB上一點(diǎn),ED是過(guò)點(diǎn)M的一條直線,連接AE、BD,過(guò)點(diǎn)B作BFAE交ED于F,且EM=FM.(1)若AE=5,求BF的長(zhǎng);(2)若∠AEC=90°,∠DBF=∠CAE,求證:CD=FE.4、如圖,點(diǎn)C、F在線段BE上,∠ABC=∠DEF=90°,BC=EF,請(qǐng)只添加一個(gè)合適的條件使△ABC≌△DEF.(1)根據(jù)“ASA”,需添加的條件是;根據(jù)“HL”,需添加的條件是;(2)請(qǐng)從(1)中選擇一種,加以證明.5、在中,,點(diǎn)D是直線BC上一點(diǎn)(點(diǎn)D不與點(diǎn)B,C重合),以AD為一邊在AD的右側(cè)作,使,,連接CE.(1)如圖(1),若點(diǎn)D在線段BC上,和之間有怎樣的數(shù)量關(guān)系?(不必說(shuō)明理由)(2)若,當(dāng)點(diǎn)D在射線BC上移動(dòng)時(shí),如圖(2),和之間有怎樣的數(shù)量關(guān)系?說(shuō)明理由.-參考答案-一、單選題1、A【解析】【分析】根據(jù)全等三角形的判定定理,用排除法以每一個(gè)選項(xiàng)進(jìn)行分析從而確定最終答案.【詳解】A、正確,利用AAS來(lái)判定全等;B、不正確,兩邊的位置不確定,不一定全等;C、不正確,兩個(gè)三角形不一定全等;D、不正確,有一直角邊和一銳角對(duì)應(yīng)相等不一定能推出兩直角三角形全等,沒(méi)有相關(guān)判定方法對(duì)應(yīng).故選A【考點(diǎn)】本題考核知識(shí)點(diǎn):全等三角形的判定.解題關(guān)鍵點(diǎn):熟記全等三角形的相關(guān)判定.2、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得CD=CE和∠DCE=90°,結(jié)合∠ACB=90°,AC=BC,可證△ACD≌△BCE,依據(jù)全等三角形的性質(zhì)即可得到∠CBE=∠A=45°,再由AD=BF可得等腰△BEF,則可計(jì)算出∠BEF的度數(shù).【詳解】解:由旋轉(zhuǎn)性質(zhì)可得:CD=CE,∠DCE=90°.∵∠ACB=90°,AC=BC,∴∠A=45°.∴∠ACB?∠DCB=∠DCE?∠DCB.即∠ACD=∠BCE.∴△ACD≌△BCE.∴∠CBE=∠A=45°.∵AD=BF,∴BE=BF.∴∠BEF=∠BFE=67.5°.故選:D.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的性質(zhì),解題的關(guān)鍵是熟練運(yùn)用旋轉(zhuǎn)的性質(zhì)找出相等的線段和角,并能準(zhǔn)確判定三角形全等,從而利用全等三角形性質(zhì)解決相應(yīng)的問(wèn)題.3、A【解析】【分析】A、根據(jù)三角形的三邊關(guān)系即可得出A不正確;B、通過(guò)等腰梯形的性質(zhì)結(jié)合全等三角形的判定與性質(zhì)即可得出∠ADB=90°,從而得出B正確;C、由梯形的性質(zhì)得出AB∥CD,結(jié)合角的計(jì)算即可得出∠ABC=60°,即C正確;D、由平行線的性質(zhì)結(jié)合等腰三角形的性質(zhì)即可得出∠DAC=∠CAB,即D正確.綜上即可得出結(jié)論.【詳解】A、∵AD=DC,∴AC<AD+DC=2CD,故A不正確;B、∵四邊形ABCD是等腰梯形,∴∠ABC=∠BAD,在△ABC和△BAD中,,∴△ABC≌△BAD(SAS),∴∠BAC=∠ABD,∵AB∥CD,∴∠CDB=∠ABD,∠ABC+∠DCB=180°,∵DC=CB,∴∠CDB=∠CBD=∠ABD=∠BAC,∵∠ACB=90°,∴∠CDB=∠CBD=∠ABD=30°,∴∠ABC=∠ABD+∠CBD=60°,B正確,C、∵AB∥CD,∴∠DCA=∠CAB,∵AD=DC,∴∠DAC=∠DCA=∠CAB,C正確.D、∵△DAB≌△CBA,∴∠ADB=∠BCA.∵AC⊥BC,∴∠ADB=∠BCA=90°,∴DB⊥AD,D正確;故選:A.【考點(diǎn)】本題考查了梯形的性質(zhì)、平行線的性質(zhì)、等腰三角形的性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是逐項(xiàng)分析四個(gè)選項(xiàng)的正誤.本題屬于中檔題,稍顯繁瑣,但好在該題為選擇題,只需由三角形的三邊關(guān)系得出A不正確即可.4、A【解析】【分析】連接AE,由線段垂直平分線的性質(zhì)得出OA=OC,AE=CE,證明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【詳解】解:如圖,連結(jié)AE,設(shè)AC交EF于O,依題意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因?yàn)镋F為線段AC的中垂線,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【考點(diǎn)】本題考查了全等三角形的判定、勾股定理,熟練掌握是解題的關(guān)鍵.5、C【解析】【分析】證明Rt△BCD≌Rt△BED(HL),由全等三角形的性質(zhì)得出CD=DE,則可得出答案.【詳解】解:,,在和中,,,,,cm,cm.故選:C.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定方法是解題的關(guān)鍵.二、填空題1、2或【解析】【詳解】可分兩種情況:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分別計(jì)算出t的值,進(jìn)而得到v的值.【解答】解:①當(dāng)BP=CQ,AB=PC時(shí),△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②當(dāng)BA=CQ,PB=PC時(shí),△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,解得:v=,綜上所述,當(dāng)v=2或時(shí),△ABP與△PQC全等,故答案為:2或.【考點(diǎn)】此題考查了動(dòng)點(diǎn)問(wèn)題,全等三角形的性質(zhì)的應(yīng)用,解一元一次方程,正確理解全等三角形的性質(zhì)得到相等的對(duì)應(yīng)邊求出t是解題的關(guān)鍵.2、或【解析】【分析】根據(jù)平行線的性質(zhì)得到CE⊥BC,根據(jù)余角的性質(zhì)得到∠ACB=∠E,根據(jù)全等三角形的性質(zhì)得到CD=AB,BC=CE,等量代換即可得到結(jié)論.【詳解】解:∵AB∥EC,AB⊥BC,∴CE⊥BC,∴∠B=∠DCE=90°,∵AC⊥DE,∴∠ACD+∠CDE=∠CDE+∠E=90°,∴∠ACB=∠E,∵AC=DE,∴△ABC≌△DCE(AAS),∴CD=AB,BC=CE,∵線段AB與線段CE的長(zhǎng)度之比為5:8,∴CD:BC=5:8,∴線段BD與線段DC的長(zhǎng)度之比為3:5,故答案為:3:5.【考點(diǎn)】本題考查了平行線的性質(zhì),全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理是解題的關(guān)鍵.3、7【解析】【詳解】由MN∥PQ,AB⊥PQ,可知∠DAE=∠EBC=90°,可判定△ADE≌△BCE,從而得出AE=BC,則AB=AE+BE=AD+BC=7.故答案為:7.點(diǎn)睛:本題考查了直角三角形全等的判定和性質(zhì)以及平行線的性質(zhì),是基礎(chǔ)知識(shí),比較簡(jiǎn)單.4、27【解析】【詳解】∵BE⊥AC,AD=CD,∴AB=CB,即△ABC為等腰三角形,∴BD平分∠ABC,即∠ABE=∠CBE=∠ABC=27°,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴∠E=∠ABE=27°.故答案是:27.5、7【解析】【分析】先利用角平分線性質(zhì)證明CD=DE,再求出的值即可.【詳解】解:∵AD平分∠BAC交BC于點(diǎn)D,,DE⊥AB,∴CD=ED.∵,∴BD+CD=7,∴,故答案為:7.【考點(diǎn)】本題主要考查了角平分線的性質(zhì),解題的關(guān)鍵是熟練掌握角平分線的性質(zhì).三、解答題1、見(jiàn)解析【解析】【分析】由得出,由SAS證明,得出對(duì)應(yīng)角相等即可.【詳解】證明:∵,∴.在和中,∴,∴.【考點(diǎn)】本小題考查垂線的性質(zhì)、全等三角形的判定與性質(zhì)、等基礎(chǔ)知識(shí),考查推理能力、空間觀念與幾何直觀.2、(1)見(jiàn)解析(2)60°(3)3【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)利用SAS證明;(2)利用全等三角形的性質(zhì)得到∠B=∠ACE=60°,計(jì)算即可得到答案;(3)利用全等的性質(zhì)得到BD的長(zhǎng),再由等邊三角形的性質(zhì),即可得到AC的長(zhǎng).(1)證明:∵△ABC和△ADE是等邊三角形,∴AD=AE,AB=AC,∠BAC=∠DAE=∠ACB=60°,∴∠BAD=∠CAE,∴△ABD≌△ACE;(2)解:∵△ABD≌△ACE,∴∠B=∠ACE=60°,∴∠DCE=180°-∠ACB-∠ACE=60°;(3)解:∵△ABD≌△ACE,∴BD=CE=5,∴BC=BD-CD=5-2=3,∴AC=BC=3.【考點(diǎn)】此題考查了全等三角形的判定及性質(zhì),熟記全等三角形的幾種判定定理:SSS,SAS,ASA,AAS,HL,并熟練應(yīng)用是解題的關(guān)鍵.3、(1)BF=5;(2)見(jiàn)解析.【解析】【分析】(1)證明△AEM≌△BFM即可;(2)證明△AEC≌△BFD,得到EC=FD,利用等式性質(zhì),得到CD=FE.【詳解】(1)∵BFAE,∴∠MFB=∠MEA,∠MBF=∠MAE,∵EM=FM,∴△AEM≌△BFM,∴AE=BF,∵AE=5,∴BF=5;(2)∵BFAE,∴∠MFB=∠MEA,∵∠AEC=90°,∴∠MFB=90°,∴∠BFD=90°,∴∠BFD=∠AEC,∵∠DBF=∠CAE,AE=BF,∴△AEC≌△BFD,∴EC=FD,∴EF+FC=FC+CD,∴CD=FE.【考點(diǎn)】本題考查了平行線的性質(zhì),三角形全等的判定和性質(zhì),等式的性質(zhì),熟練掌握平行線性質(zhì),靈活進(jìn)行三角形全等的判定是解題的關(guān)鍵.4、(1)∠ACB=∠DFE,AC=DF;(2)選擇添加條件AC=DE,證明見(jiàn)解析.【解析】【分析】(1)根據(jù)題意添加條件即可;(2)選擇添加條件AC=DE,根據(jù)“HL”證明即可.【詳解】(1)根據(jù)“ASA”,需添加的條件是∠ACB=∠DFE,根據(jù)“HL”,需添加的條件是AC=DF,故答案為:∠ACB=∠DFE,AC=DF;(2)選擇添加條件AC=DE證明,證明:∵∠ABC=∠DEF
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 保安主管面試問(wèn)題集
- 面試題集航空投資分析師崗位
- 媒體公司子公司市場(chǎng)副總面試題及答案
- 教育培訓(xùn)師崗位能力測(cè)試及答案
- 文化活動(dòng)策劃公司的市場(chǎng)拓展部副總面試題與解析
- 【國(guó)賽公益類】海角公益在線支教平臺(tái)項(xiàng)目計(jì)劃書(shū)
- 2026屆重慶市七校聯(lián)盟高三上學(xué)期第二階段聯(lián)考?xì)v史試題(含答案)
- 教師資格證面試要點(diǎn)及參考答案手冊(cè)
- 信息通信部經(jīng)理考試題庫(kù)及答案解析
- 政府公務(wù)員招聘面試題分析報(bào)告
- 氣墊床的使用課件
- 贛價(jià)協(xié)〔2015〕9號(hào)江西省建設(shè)工程造價(jià)咨詢服務(wù)收費(fèi)基準(zhǔn)價(jià)
- 高州市2022年“緬茄杯”學(xué)科競(jìng)賽數(shù)學(xué)試卷及參考答案
- 中國(guó)石化油品銷售企業(yè)實(shí)驗(yàn)室信息管理系統(tǒng)LIMSWeb操作手冊(cè)
- GB/T 27843-2011化學(xué)品聚合物低分子量組分含量測(cè)定凝膠滲透色譜法(GPC)
- GB/T 19362.2-2017龍門(mén)銑床檢驗(yàn)條件精度檢驗(yàn)第2部分:龍門(mén)移動(dòng)式銑床
- GB/T 18371-2008連續(xù)玻璃纖維紗
- 石淋(尿石癥)中醫(yī)診療方案
- 《金融學(xué)》期末考試復(fù)習(xí)題庫(kù)(帶答案)
- 《心靈奇旅》觀后感
- 2009-2022歷年廣東省汕尾市事業(yè)單位考試《通用能力測(cè)試》(綜合類)真題含答案2022-2023上岸必備帶詳解版3
評(píng)論
0/150
提交評(píng)論