重難點(diǎn)解析云南省景洪市中考數(shù)學(xué)真題分類(勾股定理)匯編專題訓(xùn)練試題(解析版)_第1頁
重難點(diǎn)解析云南省景洪市中考數(shù)學(xué)真題分類(勾股定理)匯編專題訓(xùn)練試題(解析版)_第2頁
重難點(diǎn)解析云南省景洪市中考數(shù)學(xué)真題分類(勾股定理)匯編專題訓(xùn)練試題(解析版)_第3頁
重難點(diǎn)解析云南省景洪市中考數(shù)學(xué)真題分類(勾股定理)匯編專題訓(xùn)練試題(解析版)_第4頁
重難點(diǎn)解析云南省景洪市中考數(shù)學(xué)真題分類(勾股定理)匯編專題訓(xùn)練試題(解析版)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

云南省景洪市中考數(shù)學(xué)真題分類(勾股定理)匯編專題訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點(diǎn)E為AB中點(diǎn),沿過點(diǎn)E的直線折疊,使點(diǎn)B與點(diǎn)A重合,折痕現(xiàn)交于點(diǎn)F,已知EF=,則BC的長是()A. B.3 C.3 D.32、若a,b為直角三角形的兩直角邊,c為斜邊,下列選項(xiàng)中不能用來證明勾股定理的是(

)A. B.C. D.3、如圖所示,圓柱的高AB=3,底面直徑BC=3,現(xiàn)在有一只螞蟻想要從A處沿圓柱表面爬到對(duì)角C處捕食,則它爬行的最短距離是()A. B. C. D.4、在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于(

)A.10 B.8 C.6或10 D.8或105、勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出(

)A.直角三角形的面積B.最大正方形的面積C.較小兩個(gè)正方形重疊部分的面積D.最大正方形與直角三角形的面積和6、已知點(diǎn)是平分線上的一點(diǎn),且,作于點(diǎn),點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn),若,則的最小值為(

)A.2 B.3 C.4 D.57、如圖,已知點(diǎn)E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.80第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,已知,那么數(shù)軸上點(diǎn)所表示的數(shù)是________.2、我國古代數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題:一根竹子高1丈(1丈=10尺),折斷后頂端落在離竹子底端3尺處,問折斷處離地面的高度為多少尺?如圖,設(shè)折斷處離地面的高度為x尺,根據(jù)題意,可列出關(guān)于x方程為:__________.3、如圖,在中,,分別以,,邊為直徑作半圓,圖中陰影部分在數(shù)學(xué)史上稱為“希波克拉底月牙”,當(dāng),時(shí),陰影部分的面積為________.4、我國古代有這樣一道數(shù)學(xué)問題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達(dá)其頂,問葛藤之長幾何?”題意是:如圖所示,把枯木看作一個(gè)圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長為3尺,有葛藤自點(diǎn)A處纏繞而上,繞五周后其末端恰好到達(dá)點(diǎn)B處,則問題中葛藤的最短長度是_______尺.

5、已知a、b、c是一個(gè)三角形的三邊長,如果滿足,則這個(gè)三角形的形狀是_______.6、如圖,在離水面高度為8米的岸上,有人用繩子拉船靠岸,開始時(shí)繩子BC的長為17米,幾分鐘后船到達(dá)點(diǎn)D的位置,此時(shí)繩子CD的長為10米,問船向岸邊移動(dòng)了__米.7、《九章算術(shù)》中有“折竹抵地”問題:“今有竹高一丈,末折抵地,去根三尺,問折者高幾何?”題意是:有一根竹子原來高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問折斷處離地面多高?如圖,設(shè)折斷處距離地面x尺,根據(jù)題意,可列方程為______.8、對(duì)角線互相垂直的四邊形叫做“垂美”四邊形,現(xiàn)有如圖所示的“垂美”四邊形ABCD,對(duì)角線AC、BD交于點(diǎn)O.若AD=3,BC=5,則____________.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,AD是△ABC的中線,DE⊥AC于點(diǎn)E,DF是△ABD的中線,且CE=2,DE=4,AE=8.(1)求證:;(2)求DF的長.2、閱讀與思考:請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).若直角三角形的三邊的長都是正整數(shù),則三邊的長為“勾股數(shù)”.構(gòu)造勾股數(shù),就是要尋找3個(gè)正整數(shù),使它們滿足“其中兩個(gè)數(shù)的平方和(或平方差)等于第三個(gè)數(shù)的平方”.通過觀察常見勾股數(shù)“3,4,5”;“5,12,13”;“7,24,25”……猜想當(dāng)一組勾股數(shù)中(),最小數(shù)為奇數(shù)時(shí),另兩個(gè)正整數(shù)和滿足比且,解得,.任務(wù):(1)請(qǐng)證明猜想成立,即證明,,構(gòu)成勾股數(shù).(2)若一組勾股數(shù)中,最小數(shù)為9,則另兩個(gè)數(shù)分別是________和________.3、如圖所示,在中,,,,為邊上的中點(diǎn).(1)求、的長度;(2)將折疊,使與重合,得折痕;求、的長度.4、如圖,,兩個(gè)工廠位于一段直線形河道的異側(cè),工廠至河道的距離為,工廠至河道的距離為,經(jīng)測(cè)量河道上、兩地間的距離為,現(xiàn)準(zhǔn)備在河邊某處(河寬不計(jì))修一個(gè)污水處理廠.(1)設(shè),請(qǐng)用的代數(shù)式表示的長______;(結(jié)果保留根號(hào))(2)為了使,兩廠到污水處理廠的排污管道之和最短,請(qǐng)?jiān)趫D中畫出污水廠位置,并求出排污管道最短長度?(3)通過以上的解答,充分展開聯(lián)想,運(yùn)用數(shù)形結(jié)合思想,請(qǐng)你求出的最小值為多少?5、勾股定理是人類最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一,在《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載,漢代數(shù)學(xué)家趙爽為證明勾股定理創(chuàng)制的“趙爽弦圖”也流傳至今.迄今為止已有多種證明勾股定理的方法.下面是數(shù)學(xué)課上創(chuàng)新小組驗(yàn)證過程的一部分.請(qǐng)認(rèn)真閱讀并根據(jù)他們的思路將后續(xù)的過程補(bǔ)充完整:將兩張全等的直角三角形紙片按圖所示擺放,其中,點(diǎn)在線段上,點(diǎn)在邊兩側(cè),試證明:.6、已知m>0,若3m+2,4m+8,5m+8是一組勾股數(shù),求m的值.7、已知a,b,c為△ABC的三邊,且滿足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.-參考答案-一、單選題1、B【解析】【分析】折疊的性質(zhì)主要有:1.重疊部分全等;2.折痕是對(duì)稱軸,對(duì)稱點(diǎn)的連線被對(duì)稱軸垂直平分.由折疊的性質(zhì)可知,所以可求出∠AFB=90°,再直角三角形的性質(zhì)可知,所以,的長可求,再利用勾股定理即可求出BC的長.【詳解】解:AB=AC,,故選B.【考點(diǎn)】本題考查了折疊的性質(zhì)、等腰直角三角形的判斷和性質(zhì)以及勾股定理的運(yùn)用,求出∠AFB=90°是解題的關(guān)鍵.2、A【解析】【分析】由題意根據(jù)圖形的面積得出的關(guān)系,即可證明勾股定理,分別分析即可得出答案【詳解】解:A、不能利用圖形面積證明勾股定理;B、根據(jù)面積得到;C、根據(jù)面積得到,整理得;D、根據(jù)面積得到,整理得.故選:A.【考點(diǎn)】本題考查勾股定理的證明,熟練掌握利用圖形的面積得出的關(guān)系,即可證明勾股定理.3、C【解析】【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點(diǎn)之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點(diǎn)A、C之間的最短距離為線段AC的長.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD為底面半圓弧長,AD=π,∴AC=,故選C.【考點(diǎn)】本題考查了平面展開-最短路徑問題,解題的關(guān)鍵是會(huì)將圓柱的側(cè)面展開,并利用勾股定理解答.4、C【解析】【詳解】分兩種情況:在圖①中,由勾股定理,得;;∴BC=BD+CD=8+2=10.在圖②中,由勾股定理,得;;∴BC=BD―CD=8―2=6.故選C.5、C【解析】【分析】根據(jù)勾股定理得到c2=a2+b2,根據(jù)正方形的面積公式、長方形的面積公式計(jì)算即可.【詳解】設(shè)直角三角形的斜邊長為c,較長直角邊為b,較短直角邊為a,由勾股定理得,c2=a2+b2,陰影部分的面積=c2-b2-a(c-b)=a2-ac+ab=a(a+b-c),較小兩個(gè)正方形重疊部分的長=a-(c-b),寬=a,則較小兩個(gè)正方形重疊部分底面積=a(a+b-c),∴知道圖中陰影部分的面積,則一定能求出較小兩個(gè)正方形重疊部分的面積,故選C.【考點(diǎn)】本題考查的是勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.6、B【解析】【分析】根據(jù)垂線段最短可得PN⊥OA時(shí),PN最短,再根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得PM=PN,再結(jié)合勾股定理求解即可.【詳解】解:當(dāng)PN⊥OA時(shí),PN的值最小,∵OC平分∠AOB,PM⊥OB,∴PM=PN,∵,,,∴由勾股定理可知:PM=3,∴PN的最小值為3.故選B.【考點(diǎn)】本題考查了角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì),垂線段最短的性質(zhì)及勾股定理,熟記性質(zhì)是解題的關(guān)鍵.7、C【解析】【詳解】解:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選:C.二、填空題1、【解析】【分析】首先根據(jù)勾股定理得:OB=.即OA=.又點(diǎn)A在數(shù)軸的負(fù)半軸上,則點(diǎn)A對(duì)應(yīng)的數(shù)是-.【詳解】解:由圖可知,OC=2,作BC⊥OC,垂足為C,取BC=1,故,∵A在x的負(fù)半軸上,∴數(shù)軸上點(diǎn)A所表示的數(shù)是-.故答案為:-.【考點(diǎn)】此題主要考查了實(shí)數(shù)與數(shù)軸,勾股富士蝗應(yīng)用,熟練運(yùn)用勾股定理,同時(shí)注意根據(jù)點(diǎn)的位置以確定數(shù)的符號(hào).2、【解析】【分析】設(shè)折斷處離地面的高度為x尺,根據(jù)勾股定理列出方程即可【詳解】解:設(shè)折斷處離地面的高度為x尺,根據(jù)題意可得:故答案為:【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.3、24【解析】【分析】根據(jù)勾股定理得到AC2=AB2-BC2,先求解AC,再根據(jù)陰影部分的面積等于直角三角形的面積加上以AC,BC為直徑的半圓面積,再減去以AB為直徑的半圓面積即可.【詳解】解:由勾股定理得,AC2=AB2-BC2=64,則陰影部分的面積,故答案為24.【考點(diǎn)】本題考查的是勾股定理、半圓面積計(jì)算,掌握勾股定理和半圓面積公式是解題的關(guān)鍵.4、25.【解析】【詳解】解:這種立體圖形求最短路徑問題,可以展開成為平面內(nèi)的問題解決,展開后可轉(zhuǎn)化下圖,所以是直角三角形求斜邊的問題.根據(jù)勾股定理可求出葛藤長為(尺).故答案為:25.5、直角三角形【解析】【分析】根據(jù)絕對(duì)值、完全平方數(shù)和算數(shù)平方根的非負(fù)性,可求解出a、b、c的值,再根據(jù)勾股定理的逆定理判斷即可.【詳解】解:由題意得:,解得:,∵,∴三角形為直角三角形.故答案為直角三角形.【考點(diǎn)】本題主要考查了非負(fù)數(shù)的性質(zhì)和勾股定理的逆定理,運(yùn)用非負(fù)數(shù)的性質(zhì)求出a、b、c的值是解題的關(guān)鍵.6、9.【解析】【分析】在Rt△ABC中,利用勾股定理計(jì)算出AB長,再根據(jù)題意可得CD長,然后再次利用勾股定理計(jì)算出AD長,再利用BD=AB-AD可得BD長.【詳解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸邊移動(dòng)了9米,故答案為:9.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,關(guān)鍵是掌握從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.7、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設(shè)未折斷的竹干長為尺,根據(jù)題意可列方程為:.故答案為:.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問題時(shí)勾股定理與方程的結(jié)合是解決實(shí)際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.8、34【解析】【分析】在Rt△COB和Rt△AOB中,根據(jù)勾股定理得BO2+CO2=CB2,OD2+OA2=AD2,進(jìn)一步得BO2+CO2+OD2+OA2=9+25,再根據(jù)AB2=BO2+AO2,CD2=OC2+OD2,最后求得AB2+CD2=34.【詳解】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,在Rt△COB和Rt△AOB中,根據(jù)勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,∴BO2+CO2+OD2+OA2=9+25,∵AB2=BO2+AO2,CD2=OC2+OD2,∴AB2+CD2=34;故答案為:34.【考點(diǎn)】本題考查勾股定理的應(yīng)用,熟練掌握勾股定理在實(shí)際問題中的應(yīng)用,從題中抽象出勾股定理這一數(shù)學(xué)模型是解題關(guān)鍵.三、解答題1、(1)見解析(2)DF的長為5.【解析】【分析】(1)利用勾股定理的逆定理,證明△ADC是直角三角形,即可得出∠ADC是直角;(2)根據(jù)三角形的中線的定義以及直角三角形的性質(zhì)解答即可.(1)證明:∵DE⊥AC于點(diǎn)E,∴∠AED=∠CED=90°,在Rt△ADE中,∠AED=90°,∴AD2=AE2+DE2=82+42=80,同理:CD2=20,∴AD2+CD2=80+20=100,∵AC=AE+CE=8+2=10,∴AC2=100,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC=90°;(2)解:∵AD是△ABC的中線,∠ADC=90°,∴AD垂直平分BC,∴AB=AC=10,在Rt△ADB中,∠ADB=90°,∵點(diǎn)F是邊AB的中點(diǎn),∴DF=AB=5.∴DF的長為5.【考點(diǎn)】本題主要考查了直角三角形的性質(zhì)與判定,垂直平分線的判定和的性質(zhì),熟記勾股定理與逆定理是解答本題的關(guān)鍵.2、(1)見解析(2)40;41【解析】【分析】(1)利用勾股定理的逆定理證明即可.(2)利用勾股數(shù)的公式代入求值即可.(1)證明:,∴,,構(gòu)成勾股數(shù).(2)根據(jù)最小數(shù)為奇數(shù)時(shí),另兩個(gè)正整數(shù)為,,當(dāng)a=9時(shí),,,故答案為:40,41.【考點(diǎn)】本題考查了勾股定理逆定理,勾股數(shù)的探索,代入求值,熟練掌握勾股數(shù)是解題的關(guān)鍵.3、(1)BD=2,;(2),【解析】【分析】(1)由勾股定理求出BC=4,再根據(jù)中點(diǎn)的性質(zhì)可得到BD,然后再一次運(yùn)用勾股定理求出AD即可;(2)設(shè),則,,利用勾股定理列出方程解,從而得解.【詳解】(1)∵在中,,,∴在中,∴又∵為邊上的中點(diǎn)∴∴在中,∴(2)折疊后如圖所示,為折痕,聯(lián)結(jié)設(shè),則,在中,,即解得:∴∴【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,也考查了折疊的性質(zhì).是常見中考題型.4、(1)+;(2)污水廠位置見解析,排污管道最短長度為10km;(3)13【解析】【分析】(1)依據(jù)ED=x,AC⊥CD、BD⊥CD,故根據(jù)勾股定理可用x表示出AE+BE的長;(2)根據(jù)兩點(diǎn)之間線段最短可知連接AB與CD的交點(diǎn)就是污水處理廠E的位置.過點(diǎn)B作BF⊥AC于F,構(gòu)造出直角三角形,利用勾股定理求出AB的長;(3)根據(jù)AE+BE=+=AB=10,可猜想所求代數(shù)式的值為13.(1)解:在Rt△ACE和Rt△BDE中,根據(jù)勾股定理可得AE=,BE=,∴AE+BE=+;(2)解:根據(jù)兩點(diǎn)之間線段最短可知,連接AB與CD的交點(diǎn)就是污水處理廠E的位置,如圖:過點(diǎn)B作BF⊥AC于F,則有BF=CD=8,BD=CF=1,∴AF=AC+CF=6,在Rt△ABF中,BA===10,∴排污管道

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論