中考數(shù)學總復習《 圓》試題預測試卷帶答案詳解(培優(yōu)A卷)_第1頁
中考數(shù)學總復習《 圓》試題預測試卷帶答案詳解(培優(yōu)A卷)_第2頁
中考數(shù)學總復習《 圓》試題預測試卷帶答案詳解(培優(yōu)A卷)_第3頁
中考數(shù)學總復習《 圓》試題預測試卷帶答案詳解(培優(yōu)A卷)_第4頁
中考數(shù)學總復習《 圓》試題預測試卷帶答案詳解(培優(yōu)A卷)_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

中考數(shù)學總復習《圓》試題預測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,是的弦,點在過點的切線上,,交于點.若,則的度數(shù)等于(

)A. B. C. D.2、如圖,PA,PB是⊙O的切線,A,B是切點,點C為⊙O上一點,若∠ACB=70°,則∠P的度數(shù)為(

)A.70° B.50° C.20° D.40°3、如圖,螺母的外圍可以看作是正六邊形ABCDEF,已知這個正六邊形的半徑是2,則它的周長是()A.6 B.12 C.12 D.244、如圖,點B,C,D在⊙O上,若∠BCD=130°,則∠BOD的度數(shù)是()A.50° B.60° C.80° D.100°5、如圖,在中,,,,以點為圓心,為半徑的圓與相交于點,則的長為(

)A.2 B. C.3 D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,一下水管道橫截面為圓形,直徑為100cm,下雨前水面寬為60cm,一場大雨過后,水面寬為80cm,則水位上升______cm.2、如圖,⊙O的直徑AB=26,弦CD⊥AB,垂足為E,OE:BE=5:8,則CD的長為______.3、如圖,已知正六邊形ABCDEF的邊長為2,對角線CF和BE相交于點N,對角線DF與BE相交于點M,則MN=_____.4、如圖,四邊形ABCD內接于⊙O,∠A=125°,則∠C的度數(shù)為______.5、如圖1,將一個正三角形繞其中心最少旋轉,所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個正方形繞其中心最少旋轉45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個正七邊形繞其中心最少旋轉______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長為,則所得正八邊形的面積為_______.三、解答題(5小題,每小題10分,共計50分)1、如圖,在中,∠=45°,,以為直徑的⊙與邊交于點.(1)判斷直線與⊙的位置關系,并說明理由;(2)若,求圖中陰影部分的面積.2、如圖,AB、CD是⊙O中兩條互相垂直的弦,垂足為點E,且AE=CE,點F是BC的中點,延長FE交AD于點G,已知AE=1,BE=3,OE=.(1)求證:△AED≌△CEB;(2)求證:FG⊥AD;(3)若一條直線l到圓心O的距離d=,試判斷直線l是否是圓O的切線,并說明理由.3、已知:..求作:,使它經(jīng)過點和點,并且圓心在的平分線上,4、已知PA,PB分別與⊙O相切于點A,B,∠APB=80°,C為⊙O上一點.(1)如圖①,求∠ACB的大?。?2)如圖②,AE為⊙O的直徑,AE與BC相交于點D.若AB=AD,求∠EAC的大小.5、如圖,兩個圓都以點O為圓心,大圓的弦交小圓于兩點.求證:.-參考答案-一、單選題1、B【解析】【分析】根據(jù)題意可求出∠APO、∠A的度數(shù),進一步可得∠ABO度數(shù),從而推出答案.【詳解】∵,∴∠APO=70°,∵,∴∠AOP=90°,∴∠A=20°,又∵OA=OB,∴∠ABO=20°,又∵點C在過點B的切線上,∴∠OBC=90°,∴∠ABC=∠OBC?∠ABO=90°?20°=70°,故答案為:B.【考點】本題考查的是圓切線的運用,熟練掌握運算方法是關鍵.2、D【解析】【分析】首先連接OA,OB,由PA,PB為⊙O的切線,根據(jù)切線的性質,即可得∠OAP=∠OBP=90°,又由圓周角定理,可求得∠AOB的度數(shù),繼而可求得答案.【詳解】解:連接OA,OB,∵PA,PB為⊙O的切線,∴∠OAP=∠OBP=90°,∵∠ACB=70°,∴∠AOB=2∠P=140°,∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故選:D.【考點】此題考查了切線的性質與圓周角定理,注意掌握輔助線的作法和數(shù)形結合思想的應用.3、C【解析】【分析】如圖,先求解正六邊形的中心角,再證明是等邊三角形,從而可得答案.【詳解】解:如圖,為正六邊形的中心,為正六邊形的半徑,為等邊三角形,正六邊形ABCDEF的周長為故選:【考點】本題考查的是正多邊形與圓,正多邊形的半徑,中心角,周長,掌握以上知識是解題的關鍵.4、D【解析】【分析】首先圓上取一點A,連接AB,AD,根據(jù)圓的內接四邊形的性質,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度數(shù),再根據(jù)圓周角的性質,即可求得答案.【詳解】圓上取一點A,連接AB,AD,∵點A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故選D.【考點】此題考查了圓周角的性質與圓的內接四邊形的性質.此題比較簡單,解題的關鍵是注意數(shù)形結合思想的應用,注意輔助線的作法.5、C【解析】【分析】過C點作CH⊥AB于H點,在△ABC、△CBH中由分別求出BC和BH,再由垂徑定理求出BD,進而AD=AB-BD即可求解.【詳解】解:過C點作CH⊥AB于H點,如下圖所示:∵∠ACB=90°,∠A=30°,∴△ABC、△CBH均為30°、60°、90°直角三角形,其三邊之比為,Rt△ABC中,,Rt△BCH中,,由垂徑定理可知:,∴,故選:C.【考點】本題考查了直角三角形30°角所對直角邊等于斜邊的一半,垂徑定理等知識點,熟練掌握垂徑定理是解決本題的關鍵.二、填空題1、10或70【解析】【分析】分水位在圓心下以及圓心上兩種情況,畫出符合題意的圖形進行求解即可得.【詳解】如圖,作半徑于C,連接OB,由垂徑定理得:=AB=×60=30cm,在中,,當水位上升到圓心以下時

水面寬80cm時,則,水面上升的高度為:;當水位上升到圓心以上時,水面上升的高度為:,綜上可得,水面上升的高度為30cm或70cm,故答案為:10或70.【考點】本題考查了垂徑定理的應用,掌握垂徑定理、靈活運用分類討論的思想是解題的關鍵.2、24【解析】【分析】連接OC,由題意得OE=5,BE=8,再由垂徑定理得CE=DE,∠OEC=90°,然后由勾股定理求出CE=12,即可求解.【詳解】解:連接OC,如圖所示:∵直徑AB=26,∴OC=OB=13,∵OE:BE=5:8,∴OE=5,BE=8,∵弦CD⊥AB,∴CE=DE,∠OEC=90°,∴CE==12,∴CD=2CE=24,故答案為:24.【考點】本題考查的是垂徑定理、勾股定理等知識,熟練掌握垂徑定理,由勾股定理求出CE的長是解題的關鍵.3、1【解析】【分析】根據(jù)正六邊形的性質和直角三角形的性質即可得到結論.【詳解】∵正六邊形ABCDEF的邊長為2,且對角線CF和BE相交于點N,∴∠FNE=60°,∴△ENF是等邊三角形,∴∠FNM=60°,F(xiàn)N=EF=2,∵對角線DF與BE相交于點M,∴∠FMN=90°,∴MN=FN=2=1,故答案為:1.【考點】本題考查了正多邊形和圓,正六邊形的性質,直角三角形的性質,正確的識別圖形是解題的關鍵.4、55°##55度【解析】【分析】根據(jù)圓內接四邊形的性質得出∠A+∠C=180°,再求出答案即可.【詳解】解:∵四邊形ABCD內接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=180°-125°=55°,故答案為:55°.【考點】本題考查了圓內接四邊形的性質和圓周角定理,能熟記圓內接四邊形的對角互補是解此題的關鍵.5、

【解析】【分析】根據(jù)題意,可以發(fā)現(xiàn)正n邊形繞其中心最少旋轉,所得圖形與原圖的重疊部分是正2n邊形;旋轉后的正八變形相當于將正方形剪掉了的4個全等的等腰直角三角形,設等腰直角三角形的邊長為x,則正八邊形的邊長為x;然后根據(jù)x+x+x=4求得x;最后用正方形的面積減去這八個等腰直角三角形的面積即可.【詳解】解:由題意得:正n邊形繞其中心最少旋轉,所得圖形與原圖的重疊部分是正2n邊形;則將一個正七邊形繞其中心最少旋轉所得圖形與原圖的重疊部分是正多邊形;由題意得:旋轉后的正八變形相當于將正方形剪掉了的4個全等的等腰直角三角形,設等腰直角三角形的邊長為x,則正八邊形的邊長為x∴x+x+x=4,解得x=4-2∴減去的每個等腰直角三角形的面積為:∴正八邊形的面積為:正方形的面積-4×等腰直角三角形的面積=4×4-4()=.故答案為,.【考點】本題考查了旋轉變換、圖形規(guī)律以及勾股定理等知識,根據(jù)題意找到旋轉規(guī)律是解答本題的關鍵.三、解答題1、(1)證明見解析(2)【解析】【分析】(1)利用等腰三角形的性質與三角形的內角和定理證明從而可得結論;(2)如圖,記BC與的交點為M,連接OM,先證明再利用陰影部分的面積等于三角形ABC的面積減去三角形BOM的面積,減去扇形AOM的面積即可.(1)證明:∠=45°,,即在上,為的切線.(2)如圖,記BC與的交點為M,連接OM,,,,,,,.【考點】本題考查的是等腰三角形的性質,切線的判定,扇形面積的計算,掌握“切線的判定方法與割補法求解不規(guī)則圖形面積的方法”是解本題的關鍵.2、(1)見解析;(2)見解析;(3)直線l是圓O的切線,理由見解析【解析】【分析】(1)由圓周角定理得∠A=∠C,由ASA得出△AED≌△CEB;(2)由直角三角形斜邊上的中線性質得EF=BC=BF,由等腰三角形的性質得∠FEB=∠B,由圓周角定理和對頂角相等證出∠A+∠AEG=90°,進而得出結論;(3)作OH⊥AB于H,連接OB,由垂徑定理得出AH=BH=AB=2,則EH=AH?AE=1,由勾股定理求出OH=1,OB=,由一條直線l到圓心O的距離d=等于⊙O的半徑,即可得出結論.【詳解】(1)證明:由圓周角定理得:∠A=∠C,在△AED和△CEB中,,∴△AED≌△CEB(ASA);(2)證明:∵AB⊥CD,∴∠AED=∠CEB=90°,∴∠C+∠B=90°,∵點F是BC的中點,∴EF=BC=BF,∴∠FEB=∠B,∵∠A=∠C,∠AEG=∠FEB=∠B,∴∠A+∠AEG=∠C+∠B=90°,∴∠AGE=90°,∴FG⊥AD;(3)解:直線l是圓O的切線,理由如下:作OH⊥AB于H,連接OB,如圖所示:∵AE=1,BE=3,∴AB=AE+BE=4,∵OH⊥AB,∴AH=BH=AB=2,∴EH=AH﹣AE=1,∴OH===1,∴OB===,即⊙O的半徑為,∵一條直線l到圓心O的距離d==⊙O的半徑,∴直線l是圓O的切線.【考點】本題是圓的綜合題目,考查了圓周角定理、垂徑定理、切線的判定、全等三角形的判定、直角三角形斜邊上的中線性質、等腰三角形的性質、勾股定理等知識;本題綜合性強,熟練掌握圓周角定理和垂徑定理是解題的關鍵.3、見詳解.【解析】【分析】要作圓,即需要先確定其圓心,先作∠A的角平分線,再作線段BC的垂直平分線相交于點O,即O點為圓心.【詳解】解:根據(jù)題意可知,先作∠A的角平分線,再作線段BC的垂直平分線相交于O,即以O點為圓心,OB為半徑,作圓O,如下圖所示:【考點】此題主要考查了學生對確定圓心的作法,要求學生熟練掌握應用.4、(1)∠ACB=50°(2)∠EAC=20°【解析】【分析】(1)連接OA、OB,根據(jù)切線性質和∠P=80°,得到∠AOB=100°,根據(jù)圓周角定理得到∠C=50°;(2)連接CE,證明∠BCE=∠BAE=40°,根據(jù)等腰三角形性質得到∠ABD=∠ADB=70°,由三角形外角性質得到∠EAC=20°.(1)連接OA、OB,

∵PA,PB是⊙O的切線,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,由圓周角定理得,∠ACB=∠AOB=50°;(2)連接CE,∵AE為⊙O的直徑,∴∠ACE=90°,∵∠ACB=50°,∴∠BCE=90°﹣50°=40°,∴∠BAE=∠BCE=40°,∵AB=AD,∴∠ABD=∠ADB=70

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論