版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
黑龍江七臺(tái)河勃利縣7年級(jí)數(shù)學(xué)下冊第四章三角形專題訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、以下列長度的各組線段為邊,能組成三角形的是()A.,, B.,,C.,, D.,,2、如圖,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE,BF交于點(diǎn)G,將△BCF沿BF對(duì)折,得到△BPF,延長FP交BA延長線于點(diǎn)Q,下列結(jié)論:①AE=BF;②AE⊥BF;③QF=QB;④S四邊形ECFG=S△ABG.正確的個(gè)數(shù)是()A.1 B.2 C.3 D.43、在△ABC中,若AB=3,BC=4,且周長為奇數(shù),則第三邊AC的長可以是()A.1 B.3 C.4 D.54、尺規(guī)作圖:作角等于已知角.示意圖如圖所示,則說明的依據(jù)是()A.SSS B.SAS C.ASA D.AAS5、如圖,AC=DC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列選項(xiàng)中的()A.∠A=∠D B.BC=ECC.AB=DE D.∠B=∠E6、如圖,AB∥CD,∠E+∠F=85°,則∠A+∠C=()A.85° B.105°C.115° D.95°7、如圖,點(diǎn)F,C在BE上,AC=DF,BF=EC,AB=DE,AC與DF相交于點(diǎn)G,則與2∠DFE相等的是()A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B8、如圖,D為∠BAC的外角平分線上一點(diǎn),過D作DE⊥AC于E,DF⊥AB交BA的延長線于F,且滿足∠FDE=∠BDC,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)9、定理:三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.已知:如圖,∠ACD是△ABC的外角.求證:∠ACD=∠A+∠B.證法1:如圖,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器測量所得)又∵133°=70°+63°(計(jì)算所得)∴∠ACD=∠A+∠B(等量代換).證法2:如圖,∵∠A+∠B+∠ACB=180°(三角形內(nèi)角和定理),又∵∠ACD+∠ACB=180°(平角定義),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代換).∴∠ACD=∠A+∠B(等式性質(zhì)).下列說法正確的是()A.證法1用特殊到一般法證明了該定理B.證法1只要測量夠100個(gè)三角形進(jìn)行驗(yàn)證,就能證明該定理C.證法2還需證明其他形狀的三角形,該定理的證明才完整D.證法2用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理10、以下列各組線段為邊,能組成三角形的是()A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,為△ABC的中線,為△的中線,為△的中線,……按此規(guī)律,為△的中線.若△ABC的面積為8,則△的面積為_______________.2、如圖,AB=DE,AC=DF,BF=CE,點(diǎn)B、F、C、E在一條直線上,AB=4,EF=6,求△ABC中AC邊的取值范圍.3、圖①是將木條用釘子釘成的四邊形和三角形木架,拉動(dòng)木架,觀察圖②中的變動(dòng)情況,說一說,其中所蘊(yùn)含的數(shù)學(xué)原理是_____.4、在△ABC中,若AC=3,BC=7則第三邊AB的取值范圍為________.5、我們將一副三角尺按如圖所示的位置擺放,則_______°.6、如圖,AB=CD,若要判定△ABD≌△CDB,則需要添加的一個(gè)條件是____________.7、如圖,中,,,是的中點(diǎn),的取值范圍為________.8、如圖,PA=PB,請你添加一個(gè)適當(dāng)?shù)臈l件:___________,使得△PAD≌△PBC.9、一個(gè)零件的形狀如圖,按規(guī)定∠A=90°,∠B=∠D=25°,判斷這個(gè)零件是否合格,只要檢驗(yàn)∠BCD的度數(shù)就可以了.量得∠BCD=150°,這個(gè)零件______(填“合格”不合格”).10、如圖,△ABC≌△DEF,BE=a,BF=b,則CF=___.三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD與CE交于點(diǎn)F,且AD=CD.(1)求證:△ABD≌△CFD;(2)已知BC=9,AD=6,求AF的長.2、證明“全等三角形的對(duì)應(yīng)角的平分線相等”.要求:將已有圖形根據(jù)題意補(bǔ)充完整,并據(jù)此寫出己知、求證和證明過程.3、如圖,點(diǎn)D在AB上,E在AC上,AB=AC,∠B=∠C,求證:AD=AE.4、如圖,AD,BC相交于點(diǎn)O,AO=DO.(1)如果只添加一個(gè)條件,使得△AOB≌△DOC,那么你添加的條件是(要求:不再添加輔助線,只需填一個(gè)答案即可);(2)根據(jù)已知及(1)中添加的一個(gè)條件,證明AB=DC.5、如圖1,AM為△ABC的BC邊的中線,點(diǎn)P為AM上一點(diǎn),連接PB.(1)若P為線段AM的中點(diǎn).①設(shè)△ABP的面積為S1,△ABC的面積為S,求的值;②已知AB=5,AC=3,設(shè)AP=x,求x的取值范圍.(2)如圖2,若AC=BP,求證:∠BPM=∠CAM.6、在解決線段數(shù)量關(guān)系問題中,如果條件中有角平分線,經(jīng)常采用下面構(gòu)造全等三角形的解決思路,如:在圖1中,若C是∠MON的平分線OP上一點(diǎn),點(diǎn)A在OM上,此時(shí),在ON上截取OB=OA,連接BC,根據(jù)三角形全等判定(SAS),容易構(gòu)造出全等三角形OBC和OAC,參考上面的方法,解答下列問題,如圖2,在非等邊ABC中,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,且AD、CE交于點(diǎn)F.(1)求∠AFC的度數(shù);(2)求證:AC=AE+CD.-參考答案-一、單選題1、C【分析】根據(jù)三角形三條邊的關(guān)系計(jì)算即可.【詳解】解:A.∵2+4=6,∴,,不能組成三角形;B.∵2+5<9,∴,,不能組成三角形;C.∵7+8>10,∴,,能組成三角形;D.∵6+6<13,∴,,不能組成三角形;故選C.【點(diǎn)睛】本題考查了三角形三條邊的關(guān)系,熟練掌握三角形三條邊的關(guān)系是解答本題的關(guān)鍵.三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.2、D【分析】首先證明△ABE≌△BCF,再利用角的關(guān)系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF對(duì)折,得到△BPF,利用角的關(guān)系求出QF=QB;由Rt△ABE≌Rt△BCF得S△ABE=S△BCF即可判定④正確.【詳解】解:∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點(diǎn),∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正確;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正確;根據(jù)題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正確;∵Rt△ABE≌Rt△BCF,∴S△ABE=S△BCF,∴S△ABE﹣S△BEG=S△BCF﹣S△BEG,即S四邊形ECFG=S△ABG,故④正確.故選:D.【點(diǎn)睛】本題主要是考查了三角形全等、正方形的性質(zhì),熟練地綜合應(yīng)用全等三角形以及正方形的性質(zhì),證明邊相等和角相等,是解決本題的關(guān)鍵.3、C【分析】先求解的取值范圍,再利用周長為奇數(shù),可得為偶數(shù),從而可得答案.【詳解】解:AB=3,BC=4,即△ABC周長為奇數(shù),而為偶數(shù),或或不符合題意,符合題意;故選C【點(diǎn)睛】本題考查的是三角形三邊的關(guān)系,掌握“三角形的任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”是解本題的關(guān)鍵.4、A【分析】利用基本作圖得到OD=OC=OD′=OC′,CD=C′D′,則根據(jù)全等三角形的判定方法可根據(jù)“SSS”可判斷△OCD≌△O′C′D′,然后根據(jù)全等三角形的性質(zhì)得到∠A′OB′=∠AOB.【詳解】解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根據(jù)“SSS”可判斷△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故選:A.【點(diǎn)睛】本題考查了作圖﹣基本作圖和全等三角形的判定與性質(zhì),解題關(guān)鍵是熟練掌握基本作圖和全等三角形的判定定理.5、C【分析】根據(jù)全等三角形的判定定理進(jìn)行分析即可;【詳解】根據(jù)已知條件可得,即,∵AC=DC,∴已知三角形一角和角的一邊,根據(jù)全等條件可得:A.∠A=∠D,可根據(jù)ASA證明,A正確;B.BC=EC,可根據(jù)SAS證明,B正確;C.AB=DE,不能證明,C故錯(cuò)誤;D.∠B=∠E,根據(jù)AAS證明,D正確;故選:C.【點(diǎn)睛】本題主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解題的關(guān)鍵.6、D【分析】設(shè)交于點(diǎn),過點(diǎn)作,根據(jù)平行線的性質(zhì)可得,根據(jù)三角形的外角性質(zhì)可得,進(jìn)而即可求得【詳解】解:設(shè)交于點(diǎn),過點(diǎn)作,如圖,∵∴∠E+∠F=85°故選D【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形的外角性質(zhì),平角的定義,掌握三角形的外角性質(zhì)是解題的關(guān)鍵.7、C【詳解】由題意根據(jù)等式的性質(zhì)得出BC=EF,進(jìn)而利用SSS證明△ABC與△DEF全等,利用全等三角形的性質(zhì)得出∠ACB=∠DFE,最后利用三角形內(nèi)角和進(jìn)行分析解答.【分析】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,在△ABC與△DEF中,,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE,∴2∠DFE=180°﹣∠FGC,故選:C.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì),其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).8、D【分析】利用AAS證明△CDE≌△BDF,可判斷①④正確;再利用HL證明Rt△ADE≌Rt△ADF,可判斷②正確;由∠BAC=∠EDF,∠FDE=∠BDC,可判斷③正確.【詳解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE與△BDF中,,∴△CDE≌△BDF(AAS),故①正確;∴CE=BF,在Rt△ADE與Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正確;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正確;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正確故選:D.【點(diǎn)睛】本題主要考查了全等三角形的判定及性質(zhì),外角的性質(zhì)等,熟悉掌握全等三角形的判定方法,靈活尋找條件是解題的關(guān)鍵.9、D【分析】利用測量的方法只能是驗(yàn)證,用定理,定義,性質(zhì)結(jié)合嚴(yán)密的邏輯推理推導(dǎo)新的結(jié)論才是證明,再逐一分析各選項(xiàng)即可得到答案.【詳解】解:證法一只是利用特殊值驗(yàn)證三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,證法2才是用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理,故A不符合題意,C不符合題意,D符合題意,證法1測量夠100個(gè)三角形進(jìn)行驗(yàn)證,也只是驗(yàn)證,不能證明該定理,故B不符合題意;故選D【點(diǎn)睛】本題考查的是三角形的外角的性質(zhì)的驗(yàn)證與證明,理解驗(yàn)證與證明的含義及證明的方法是解本題的關(guān)鍵.10、A【分析】三角形的任意兩條之和大于第三邊,任意兩邊之差小于第三邊,根據(jù)原理再分別計(jì)算每組線段當(dāng)中較短的兩條線段之和,再與最長的線段進(jìn)行比較,若和大于最長的線段的長度,則三條線段能構(gòu)成三角形,否則,不能構(gòu)成三角形,從而可得答案.【詳解】解:所以以3cm,4cm,5cm為邊能構(gòu)成三角形,故A符合題意;所以以3cm,3cm,6cm為邊不能構(gòu)成三角形,故B不符合題意;所以以5cm,10cm,4cm為邊不能構(gòu)成三角形,故C不符合題意;所以以1cm,2cm,3cm為邊不能構(gòu)成三角形,故D不符合題意;故選A【點(diǎn)睛】本題考查的是三角形的三邊之間的關(guān)系,掌握“利用三角形三邊之間的關(guān)系判定三條線段能否組成三角形”是解本題的關(guān)鍵.二、填空題1、【分析】根據(jù)三角形的中線性質(zhì),可得△的面積=,△的面積=,……,進(jìn)而即可得到答案.【詳解】由題意得:△的面積=,△的面積=,……,△的面積==.故答案是:.【點(diǎn)睛】本題主要考查三角形的中線的性質(zhì),掌握三角形的中線把三角形的面積平分,是解題的關(guān)鍵.2、2<AC<10【分析】由BF=CE得到BC=EF=6,再根據(jù)三角形三邊關(guān)系求解即可.【詳解】解:∵BF=CE,點(diǎn)B、F、C、E在一條直線上,∴BF+FC=CE+FC,∴BC=EF=6,∵AB=4,∴6-4<AC<6+4,即2<AC<10,∴AC邊的取值范圍為2<AC<10.【點(diǎn)睛】本題考查三角形的三邊關(guān)系,熟知一個(gè)三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答的關(guān)鍵.3、三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性【分析】根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性解答.【詳解】由圖示知,四邊形變形了,而三角形沒有變形,其中所蘊(yùn)含的數(shù)學(xué)原理是三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.故答案是:三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.【點(diǎn)睛】本題考查了三角形的穩(wěn)定性和四邊形具有不穩(wěn)定性,關(guān)鍵抓住圖中圖形是否變形,從而判斷是否具有穩(wěn)定性.4、4<AB<10【分析】根據(jù)三角形的三邊關(guān)系,直接求解即可.【詳解】解:∵在△ABC中,AC=3,BC=7,,即,解得.故答案為:.【點(diǎn)睛】本題考查的是三角形的三邊關(guān)系,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.三角形中第三邊的長大于其他兩邊之差,小于其他兩邊之和.5、45【分析】利用三角形的外角性質(zhì)分別求得∠α和∠β的值,代入求解即可.【詳解】解:根據(jù)題意,∠A=60°,∠C=30°,∠D=∠DBG=45°,∠ABC=∠DGB=∠DGC=90°,∴∠β=∠DBG+∠C=75°,∠α=∠DGC+∠C=120°,∴∠α?∠β=120°-75°=45°,故答案為:45.【點(diǎn)睛】本題考查了三角形的外角性質(zhì),解答本題的關(guān)鍵是明確題意,找到三角板中隱含的角的度數(shù),利用數(shù)形結(jié)合的思想解答.6、∠1=∠2(或填A(yù)D=CB)【分析】根據(jù)題意知,在△ABD與△CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加∠1=∠2即可.由三角形判定定理SSS可以推知,只需要添加AD=CB即可.【詳解】解:∵在△ABD與△CDB中,AB=CD,BD=DB,∴添加∠1=∠2時(shí),可以根據(jù)SAS判定△ABD≌△CDB,添加AD=CB時(shí),可以根據(jù)SSS判定△ABD≌△CDB,,故答案為∠1=∠2(或填A(yù)D=CB).【點(diǎn)睛】本題考查了全等三角形的判定,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.7、【分析】延長AD到E,使,連接,證,得到,在中,根據(jù)三角形三邊關(guān)系定理得出,代入求出即可.【詳解】解:延長AD到E,使,連接,如圖所示:∵AD是BC邊上的中線,∴,在和中,,∴,∴,在中,,∴,∴,故答案為:.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)和判定,三角形的三邊關(guān)系定理的應(yīng)用,熟練掌握相關(guān)基本性質(zhì)是解題的關(guān)鍵.8、∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC或AC=BD.【分析】已有∠P是公共角和邊PA=PB,根據(jù)全等三角全等的條件,利用AAS需要添加∠D=∠C,根據(jù)ASA需要添加∠PAD=∠PBC或∠DBC=∠CAD,根據(jù)邊角邊需要添加PD=PC或PC=PD.填入一個(gè)即可.【詳解】解:∵PA=PB,∠P是公共角,∴根據(jù)AAS可以添加∠D=∠C,,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠D=∠C,∴△PAD≌△PBC(AAS).根據(jù)ASA可以添加∠PAD=∠PBC,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠PAD=∠PBC,∴△PAD≌△PBC(ASA).根據(jù)ASA可以添加∠DBC=∠CAD,∴180°-∠DBC=180°-∠CAD,即∠PAD=∠PBC,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠PAD=∠PBC,∴△PAD≌△PBC(ASA).根據(jù)SAS可添加PD=PC在△PAD和△PBC中,∵PA=PB,∠P是公共角,PD=PC,∴△PAD≌△PBC(SAS).根據(jù)SAS可添加BD=AC,∵PA=PB,BD=AC,∴PA+AC=PB+BD即PC=PD,在△PAD和△PBC中,∵PA=PB,∠P是公共角,PD=PC,∴△PAD≌△PBC(SAS).故答案為:∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC或AC=BD.【點(diǎn)睛】本題考查三角形全等添加條件,掌握三角形全等判定方法與定理是解題關(guān)鍵.9、不合格【分析】連接AC并延長,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可進(jìn)行判定.【詳解】解:如圖,連接AC并延長,由三角形的外角性質(zhì)可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴這個(gè)零件不合格.故答案為:不合格.【點(diǎn)睛】本題考查了三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記性質(zhì)并作輔助線構(gòu)造出兩個(gè)三角形是解題的關(guān)鍵.10、##【分析】先利用線段和差求EF=BE﹣BF=a-b,根據(jù)全等三角形的性質(zhì)BC=EF,再結(jié)合線段和差求出FC可得答案.【詳解】解:∵BE=,BF=,∴EF=BE﹣BF=,∵△ABC≌△DEF,∴BC=EF=,∴CF=BC﹣BF=,故答案為:.【點(diǎn)睛】本題考查全等三角形的性質(zhì),線段和差,解題的關(guān)鍵是根據(jù)全等三角形的性質(zhì)得出BC=EF.三、解答題1、(1)證明見解析;(2)AF=3【分析】(1)利用同角的余角相等,證明∠BAD=∠FCD,利用ASA證明即可;(2)利用全等三角形的性質(zhì),得BD=DF,結(jié)合BD=BC﹣CD,AF=AD﹣DF計(jì)算即可.【詳解】(1)證明:∵AD⊥BC,CE⊥AB,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠FCD,在△ABD和CFD中,,∴△ABD≌△CFD(ASA);(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=9,AD=DC=6,∴BD=BC﹣CD=3,∴AF=AD﹣DF=6﹣3=3.【點(diǎn)睛】本題考查了ASA證明三角形全等,全等三角形的性質(zhì),熟練掌握三角形全等的判定和性質(zhì)是解題的關(guān)鍵.2、見解析.【分析】根據(jù)圖形和命題寫出已知求證,根據(jù)全等三角形的性質(zhì)得出∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,根據(jù)角平分線的定義得出∠BAD=∠B′A′D′,根據(jù)全等三角形的判定得出△BAD≌△B′A′D′,再根據(jù)全等三角形的性質(zhì)得出答案即可.【詳解】解:如圖,已知:△ABC≌△A′B′C′,AD、A′D′分別是∠BAC和∠B′A′C′的角平分線,求證:AD=A′D′,證明:∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,∵AD、A′D′分別是∠BAC和∠B′A′C′的角平分線,∴∠BAD=∠BAC,∠B′A′D′=∠B′A′C′,∴∠BAD=∠B′A′D′,在△BAD和△B′A′D中,,∴△BAD≌△B′A′D′(ASA),∴AD=A′D′.【點(diǎn)睛】本題考查了全等三角形的判定定理和性質(zhì)定理,能求出△BAD≌△B′A′D′是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAAS,SSS,兩直角三角形全等還有HL,全等三角形的對(duì)應(yīng)邊相等.3、見解析【分析】根據(jù)全等三角形的判定定理ASA可以證得△ACD≌△ABE,然后由“全等三角形的對(duì)應(yīng)邊相等”即可證得結(jié)論.【詳解】證明:在△ABE與△ACD中,,∴△ACD≌△ABE(ASA),∴AD=AE(全等三角形的對(duì)應(yīng)邊相等).【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì).在應(yīng)用全等三角形的判定時(shí),要注意三角形間的公共邊和公共角.4、(1)OB=OC(或,或);(2)見解析【分析】(1)根據(jù)SAS添加OB=OC即可;(2)由(1)得△AOB≌△DOC,由全等三角形的性質(zhì)可得結(jié)論.【詳解】解:(1)添加的條件是:OB=OC(或,或)證明:在和中所以,△AOB≌△DOC(2)由(1)知,△AOB≌△DOC所以,AB=DC.【點(diǎn)睛】本題主要考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定方法是解答本題的關(guān)鍵5、(1)①,②;(2)證明見解析【分析】(1)①由中線定義即可得,故②過C點(diǎn)作AB平行線,過B點(diǎn)作AC平行線,相交于點(diǎn)N,連接ME,可得,AB=CE,則在中,有兩邊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025福建龍巖市上杭縣廬豐衛(wèi)生院招聘一體化鄉(xiāng)村醫(yī)生1人參考筆試題庫附答案解析
- 深度解析(2026)《GBT 26904-2020桃貯藏技術(shù)規(guī)程》
- 2025廣東肇慶市德慶縣教育局所屬公辦幼兒園招聘合同制工作人員26人考試參考試題及答案解析
- 2025江蘇南通市崇川區(qū)區(qū)屬國有企業(yè)下屬控股公司招聘8人備考筆試試題及答案解析
- 深度解析(2026)《GBT 25905.2-2010信息技術(shù) 通 用多八位編碼字符集 錫伯文、滿文名義字符、顯現(xiàn)字符與合體字 32點(diǎn)陣字型 第2部分:正黑體》
- 深度解析(2026)《GBT 25896.1-2010深度解析(2026)《設(shè)備用圖形符號(hào) 起重機(jī) 第1部分:通 用符號(hào)》》
- 深度解析(2026)《GBT 25892.4-2010信息技術(shù) 維吾爾文、哈薩克文、柯爾克孜文編碼字符集 32點(diǎn)陣字型 第4部分:庫非黑體》
- 2025上海生物技術(shù)學(xué)院招聘生物技術(shù)學(xué)院課題組動(dòng)物實(shí)驗(yàn)研究助理崗位1人備考筆試試題及答案解析
- 2025陜西西咸新區(qū)空港第一學(xué)校就業(yè)見習(xí)招聘8人參考筆試題庫附答案解析
- 2025廣東佛山市南海區(qū)國有資產(chǎn)監(jiān)督管理局財(cái)務(wù)總監(jiān)招聘1人備考筆試題庫及答案解析
- 2025年保密試題問答題及答案
- 建設(shè)工程工程量清單計(jì)價(jià)標(biāo)準(zhǔn)(2024版)
- 代建項(xiàng)目管理流程與責(zé)任分工
- cnc刀具刀具管理辦法
- DB14∕T 3069-2024 放射治療模擬定位技術(shù)規(guī)范
- 如何培養(yǎng)孩子深度專注
- 2024年餐飲店長年度工作總結(jié)
- 護(hù)理8S管理匯報(bào)
- 產(chǎn)前篩查標(biāo)本采集與管理制度
- 2025勞動(dòng)合同書(上海市人力資源和社會(huì)保障局監(jiān)制)
- 藥膳餐廳創(chuàng)新創(chuàng)業(yè)計(jì)劃書
評(píng)論
0/150
提交評(píng)論