重難點解析河北省深州市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測試試卷(解析版)_第1頁
重難點解析河北省深州市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測試試卷(解析版)_第2頁
重難點解析河北省深州市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測試試卷(解析版)_第3頁
重難點解析河北省深州市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測試試卷(解析版)_第4頁
重難點解析河北省深州市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測試試卷(解析版)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河北省深州市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、小明想知道學(xué)校旗桿的高,他發(fā)現(xiàn)旗桿上的繩子垂到地面還多1m,當(dāng)它把繩子的下端拉開4m后,發(fā)現(xiàn)下端剛好接觸地面,則旗桿的高為(

)A.7m B.7.5m C.8m D.9m2、下列四組數(shù)中,是勾股數(shù)的是()A.5,12,13 B.4,5,6 C.2,3,4 D.1,,3、如圖,正方體盒子的棱長為2,M為BC的中點,則一只螞蟻從A點沿盒子的表面爬行到M點的最短距離為(

)A. B.C. D.4、如圖,桌上有一個圓柱形玻璃杯(無蓋)高6厘米,底面周長16厘米,在杯口內(nèi)壁離杯口1.5厘米的A處有一滴蜜糖,在玻璃杯的外壁,A的相對方向有一小蟲P,小蟲離杯底的垂直距離為1.5厘米,小蟲爬到蜜糖處的最短距離是(

)A.厘米 B.10厘米 C.厘米 D.8厘米5、如圖,一棵大樹在一次強臺風(fēng)中距地面5m處折斷,倒下后樹頂端著地點A距樹底端B的距離為12m,這棵大樹在折斷前的高度為(

)A.10m B.15m C.18m D.20m6、若a,b為直角三角形的兩直角邊,c為斜邊,下列選項中不能用來證明勾股定理的是(

)A. B.C. D.7、如圖,在中,,,,為邊上一動點,于,于,為中點,則的最小值為(

).A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖所示,在四邊形ABCD中,AB=5,BC=3,DE⊥AC于E,DE=3,S△DAC=6,則∠ACB的度數(shù)等于_____.2、我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一個問題:“今有池方一丈,葭(ji?。┥渲?,出水一尺.引葭赴岸(丈、尺是長度單位,1丈10尺)其大意為:有一個水池,水面是一個邊長為10尺的正方形,它高出水面1尺(即BC=1尺).如果把這根蘆葦拉向水池一邊的中點,它的頂端B恰好到達池邊的水面D處,問水的深度是多少?則水深DE為_____尺.3、小聰準(zhǔn)備測量河水的深度,他把一根竹竿插到離岸邊遠的水底,竹竿高出水面,把竹竿的頂端拉向岸邊,竹竿頂和岸邊的水面剛好相齊,則河水的深度為__________.4、對角線互相垂直的四邊形叫做“垂美”四邊形,現(xiàn)有如圖所示的“垂美”四邊形ABCD,對角線AC、BD交于點O.若AD=3,BC=5,則____________.5、在繼承和發(fā)揚紅色學(xué)校光榮傳統(tǒng),與時俱進,把育英學(xué)校建成一所文明的、受社會尊敬的學(xué)校升旗儀式上,如圖所示,一根旗桿的升旗的繩垂直落地后還剩余1米,若將繩子拉直,則繩端離旗桿底端的距離有5米.則旗桿的高度______.6、如圖,在長方形ABCD中,AB=8,AD=10,點E為BC上一點,將△ABE沿AE折疊,點B恰好落在線段DE上的點F處,則BE的長為______.7、如圖,一架長5米的梯子A1B1斜靠在墻A1C上,B1到墻底端C的距離為3米,此時梯子的高度達不到工作要求,因此把梯子的B1端向墻的方向移動了1.6米到B處,此時梯子的高度達到工作要求,那么梯子的A1端向上移動了_____米.8、如圖,該圖形是由直角三角形和正方形構(gòu)成,其中最大正方形的邊長為7,則正方形A、B、C、D的面積之和為__________.三、解答題(7小題,每小題10分,共計70分)1、如圖,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,點A,C,D依次在同一直線上,且AB∥DE.(1)求證:△ABC≌△DCE;(2)連結(jié)AE,當(dāng)BC=5,AC=12時,求AE的長.2、2020年春季“新冠肺炎”在武漢全面爆發(fā),蔓延全國,危及到人民生命安全,為了積極響應(yīng)國家防控政策,雙流區(qū)某鎮(zhèn)政府采用了移動宣講的形式進行宣傳防控措施,如圖,筆直公路的一側(cè)點處有一村莊,村莊到公路的距離為600米,假設(shè)宣講車周圍1000米以內(nèi)能聽到廣播宣傳,宣講車在公路上沿方向行駛時:(1)請問村莊能否聽到宣傳,請說明理由;(2)如果能聽到,已知宣講車的速度是200米/分鐘,那么村莊總共能聽到多長時間的宣傳?3、如圖,小明家在一條東西走向的公路北側(cè)米的點處,小紅家位于小明家北米(米)、東米(米)點處.(1)求小明家離小紅家的距離;(2)現(xiàn)要在公路上的點處建一個快遞驛站,使最小,請確定點的位置,并求的最小值.4、如圖,有一架秋千,當(dāng)他靜止時,踏板離地的垂直高度,將他往前推送(水平距離)時,秋千的踏板離地的垂直高度,秋千的繩索始終拉得很直,求繩索的長度.5、某海上有一小島,為了測量小島兩端A,B的距離,測量人員設(shè)計了一種測量方法,如圖,已知B是CD的中點,E是BA延長線上的一點,且∠CED=90°,測得AE=16.6海里,DE=60海里,CE=80海里.(1)求小島兩端A,B的距離.(2)過點C作CF⊥AB交AB的延長線于點F,求值.6、如圖,點是正方形內(nèi)一點,將繞點順時針旋轉(zhuǎn)到的位置,若,求的度數(shù).7、如圖所示的一塊地,,,,,,求這塊地的面積.-參考答案-一、單選題1、B【解析】【分析】根據(jù)題意,畫出圖形,設(shè)旗桿AB=x米,則AC=(x+1)米,在Rt△ABC中,根據(jù)勾股定理的方程(x+1)2=x2+42,解方程求得x的值即可.【詳解】如圖所示:設(shè)旗桿AB=x米,則AC=(x+1)米,在Rt△ABC中,AC2=AB2+BC2,即(x+1)2=x2+42,解得:x=7.5.故選B.【考點】本題考查了勾股定理的應(yīng)用,解決本題的基本思路是是畫出示意圖,利用勾股定理列方程求解.2、A【解析】【分析】欲判斷是否為勾股數(shù),必須根據(jù)勾股數(shù)是正整數(shù),同時還需驗證兩小邊的平方和是否等于最長邊的平方.【詳解】解:A、52+122=132,都是正整數(shù),是勾股數(shù),故此選項符合題意;B、42+52≠62,不是勾股數(shù),故此選項不合題意;C、22+32≠42,不是勾股數(shù),故此選項不合題意;D、,不是正整數(shù),不是勾股數(shù),故此選項不合題意;故選:A.【考點】此題主要考查了勾股數(shù),解答此題要用到勾股數(shù)組的定義,如果a,b,c為正整數(shù),且滿足a2+b2=c2,那么,a、b、c叫做一組勾股數(shù).3、B【解析】【分析】先利用展開圖確定最短路線,再利用勾股定理求解即可.【詳解】解:如圖,螞蟻沿路線AM爬行時距離最短;∵正方體盒子棱長為2,M為BC的中點,∴,∴,故選:B.【考點】本題考查了螞蟻爬行的最短路徑為題,涉及到了正方形的性質(zhì)、正方體的展開圖、勾股定理、兩點之間線段最短等知識,解題關(guān)鍵是牢記相關(guān)概念與靈活應(yīng)用.4、B【解析】【分析】把圓柱沿著點A所在母線展開,把圓柱上最短距離轉(zhuǎn)化為將軍飲馬河型最短問題求解即可.【詳解】把圓柱沿著點A所在母線展開,如圖所示,作點A的對稱點B,連接PB,則PB為所求,根據(jù)題意,得PC=8,BC=6,根據(jù)勾股定理,得PB=10,故選B.【考點】本題考查了圓柱上的最短問題,利用圓柱展開,把問題轉(zhuǎn)化為將軍飲馬河問題,靈活使用勾股定理是解題的關(guān)鍵.5、C【解析】【詳解】∵樹的折斷部分與未斷部分、地面恰好構(gòu)成直角三角形,且BC=5m,AB=12m,∴AC===13m,∴這棵樹原來的高度=BC+AC=5+13=18m.故選C.6、A【解析】【分析】由題意根據(jù)圖形的面積得出的關(guān)系,即可證明勾股定理,分別分析即可得出答案【詳解】解:A、不能利用圖形面積證明勾股定理;B、根據(jù)面積得到;C、根據(jù)面積得到,整理得;D、根據(jù)面積得到,整理得.故選:A.【考點】本題考查勾股定理的證明,熟練掌握利用圖形的面積得出的關(guān)系,即可證明勾股定理.7、D【解析】【分析】先根據(jù)矩形的判定得出AEPF是矩形,再根據(jù)矩形的性質(zhì)得出EF,AP互相平分,且EF=AP,再根據(jù)垂線段最短的性質(zhì)就可以得出AP⊥BC時,AP的值最小,即AM的值最小,根據(jù)面積關(guān)系建立等式求出其解即可.【詳解】解:如圖,連接AP,∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四邊形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交點就是M點.∵當(dāng)AP的值最小時,AM的值就最小,∴當(dāng)AP⊥BC時,AP的值最小,即AM的值最小.∵AP?BC=AB?AC,∴AP?BC=AB?AC,∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=,∴AM=.故選:D.【考點】本題考查了矩形的性質(zhì)的運用,勾股定理的運用,三角形的面積公式的運用,垂線段最短的性質(zhì)的運用,解題的關(guān)鍵是求出AP的最小值.二、填空題1、90°##90度【解析】【分析】根據(jù)三角形面積公式求出AC=4,根據(jù)勾股定理逆定理即可求出∠ACB=90°.【詳解】解:∵DE⊥AC于E,DE=3,S△DAC=6,∴×AC×DE=6,∴AC=4,∴,∵AB=5,∴AB2=25,∴,∴∠ACB=90°.故答案為:90°【考點】本題考查了勾股定理逆定理和三角形的面積應(yīng)用,熟練掌握勾股定理逆定理是解題關(guān)鍵.2、12【解析】【分析】設(shè)水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理列方程,解出h即可.【詳解】設(shè)水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理,得(h+1)2-h2=52解得h=12,∴水深為12尺,故答案是:12.【考點】本題主要考查勾股定理的應(yīng)用,熟練根據(jù)勾股定理列出方程是解題的關(guān)鍵.3、2【解析】【分析】根據(jù)河水深度、竹竿到岸邊的距離、竹竿長構(gòu)成直角三角形,利用勾股定理進行計算即可.【詳解】根據(jù)題意畫出示意圖,如圖,則AC=0.5m,,,所以BC即為河水深度,,∵,∴是直角三角形,∴,∴,解得:BC=2(m),故答案為:2.【考點】本題考查了勾股定理,根據(jù)題意畫示意圖找出與所求邊長相關(guān)線段所構(gòu)成直角三角形是解題關(guān)鍵.4、34【解析】【分析】在Rt△COB和Rt△AOB中,根據(jù)勾股定理得BO2+CO2=CB2,OD2+OA2=AD2,進一步得BO2+CO2+OD2+OA2=9+25,再根據(jù)AB2=BO2+AO2,CD2=OC2+OD2,最后求得AB2+CD2=34.【詳解】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,在Rt△COB和Rt△AOB中,根據(jù)勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,∴BO2+CO2+OD2+OA2=9+25,∵AB2=BO2+AO2,CD2=OC2+OD2,∴AB2+CD2=34;故答案為:34.【考點】本題考查勾股定理的應(yīng)用,熟練掌握勾股定理在實際問題中的應(yīng)用,從題中抽象出勾股定理這一數(shù)學(xué)模型是解題關(guān)鍵.5、12米【解析】【分析】設(shè)旗桿的高度是x米,繩子長為(x+1)米,旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求出x的值,從而求出旗桿的高度.【詳解】解:設(shè)旗桿的高度為米,根據(jù)題意可得:,解得:,答:旗桿的高度為12米.故答案為:12米.【考點】本題考查勾股定理的應(yīng)用,關(guān)鍵看到旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求解.6、【解析】【分析】設(shè),則,由折疊的性質(zhì)可知,,在中利用勾股定理表示出,在中,利用勾股定理列方程求解.【詳解】解:設(shè),則,由折疊的性質(zhì)可知,,,.在中,,.在中,,即,解得.的長為.【考點】本題考查了勾股定理的應(yīng)用,折疊的性質(zhì),熟練掌握勾股定理是解題的關(guān)鍵.7、0.8【解析】【分析】梯子的長是不變的,只要利用勾股定理解出梯子滑動前和滑動后的所構(gòu)成的兩直角三角形,分別得出AO,A1O的長即可.【詳解】解:在Rt△ABO中,根據(jù)勾股定理知,A1O==4(m),在Rt△ABO中,由題意可得:BO=1.4(m),根據(jù)勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案為0.8.【考點】本題考查勾股定理的應(yīng)用,解題關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.8、49【解析】【分析】根據(jù)正方形A,B,C,D的面積和等于最大的正方形的面積,求解即可求出答案.【詳解】如圖對所給圖形進行標(biāo)注:因為所有的三角形都是直角三角形,所有的四邊形都是正方形,所以正方形A的面積,正方形B的面積,正方形C的面積,正方形D的面積.因為,,所以正方形A,B,C,D的面積和.故答案為:49.【考點】本題主要考查了勾股定理、正方形的性質(zhì),面積的計算,掌握勾股定理是解本題的關(guān)鍵.三、解答題1、(1)見解析;(2)13【解析】【分析】根據(jù)題意可知,本題考查平行的性質(zhì),全等三角形的判定和勾股定理,根據(jù)判定定理,運用兩直線平行內(nèi)錯角相等再通過AAS以及勾股定理進行求解.【詳解】解:(1)∵∴在△ABC和△DCE中∴△ABC≌△DCE(2)由(1)可得BC=CE=5在直角三角形ACE中【考點】本題考查平行的性質(zhì),全等三角形的判定和勾股定理,熟練掌握判定定理運用以及平行的性質(zhì)是解決此類問題的關(guān)鍵.2、(1)村莊能聽到宣傳,理由見解析;(2)村莊總共能聽到8分鐘的宣傳.【解析】【分析】(1)直接比較村莊到公路的距離和廣播宣傳距離即可;(2)過點作于點,利用勾股定理運算出廣播影響村莊的路程,再除以速度即可得到時間.【詳解】解:(1)村莊能聽到宣傳,理由:∵村莊到公路的距離為600米1000米,∴村莊能聽到宣傳;(2)如圖:過點作于點,假設(shè)當(dāng)宣講車行駛到點開始影響村莊,行駛點結(jié)束對村莊的影響,則米,米,∴(米),∴米,∴影響村莊的時間為:(分鐘),∴村莊總共能聽到8分鐘的宣傳.【考點】本題主要考查了垂線的性質(zhì),勾股定理,仔細審題獲取相關(guān)信息合理作出圖形是解題的關(guān)鍵.3、(1)米;(2)見解析,米【解析】【分析】(1)如圖,連接AB,根據(jù)勾股定理即可得到結(jié)論;(2)如圖,作點A關(guān)于直線MN的對稱點A',連接A'B交MN于點P.驛站到小明家和到小紅家距離和的最小值即為A'B,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:(1)如圖,連接AB,由題意知AC=500,BC=1200,∠ACB=90°,在Rt△ABC中,∵∠ACB=90°,∴AB2=AC2+BC2=5002+12002=1690000,∵AB>0∴AB=1300米;(2)如圖,作點A關(guān)于直線MN的對稱點A',連接A'B交MN于點P.驛站到小明家和到小紅家距離和的最小值即為A'B,由題意知AD=200米,A'C⊥MN,∴A'C=AC+AD+A'D=500+200+200=900米,在Rt△A'BC中,∵∠ACB=90°,∴A'B2=A'C2+BC2=9002+12002=2250000,∵A'B>0,∴A'B=1500米,即從驛站到小明家和到小紅家距離和的最小值為1500米.【考點】本題考查軸對稱-最短問題,勾股定理,題的關(guān)鍵是學(xué)會利用軸對稱解決最短問題.4、【解析】【分析】設(shè)秋千的繩索長為,則,,利用勾股定理得,再解方程即可得出答案.【詳解】解:設(shè)秋千的繩索長為,則,,在中,,即,解得,答:繩索的長度是.【考點】此題主要考查了勾股定理的應(yīng)用,關(guān)鍵是正確理解題意,表示出AC、AB的長,掌握直角三角形中兩直角邊的平方和等于斜邊的平方.5、(1)33.4海里(2)【解析】【分析】(1)利用勾股定理求出CD,再根據(jù)斜邊的中線等于斜邊的一半求出BE,則AB可求;(2)設(shè)BF=x海里.利用勾股定理先表示出CF2,在Rt△CFE中,∠CFE=90°,利用勾股定理有CF2+EF2=CE2,即,解方程即可得解.(1)在△DCE中,∠CED=90°,DE=60海里,CE=80海里,由勾股定理可得(海里),∵B是CD的中點,∴(海里),∴AB=BE-AE=50-16.6=33.4(海里)答:小島兩端A、B的距離是33.4海里;(2)設(shè)BF=x海里.在Rt△CFB中,∠CFB=90°,∴CF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論