版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
中考數(shù)學(xué)總復(fù)習(xí)《圓》過關(guān)檢測試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,AB是⊙O的直徑,BC與⊙O相切于點(diǎn)B,AC交⊙O于點(diǎn)D,若∠ACB=50°,則∠BOD等于()A.40° B.50° C.60° D.80°2、如圖,在中,,,,以點(diǎn)為圓心,為半徑的圓與所在直線的位置關(guān)系是(
)A.相交 B.相離 C.相切 D.無法判斷3、下列說法正確的是(
)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點(diǎn)所表示的數(shù)為;④用反證法證明命題“一個(gè)三角形最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角”;⑤如圖,在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn).A.1 B.2 C.3 D.44、已知點(diǎn)在上.則下列命題為真命題的是(
)A.若半徑平分弦.則四邊形是平行四邊形B.若四邊形是平行四邊形.則C.若.則弦平分半徑D.若弦平分半徑.則半徑平分弦5、如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)I是△ABC的內(nèi)心,∠AIC=124°,點(diǎn)E在AD的延長線上,則∠CDE的度數(shù)為()A.56° B.62° C.68° D.78°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,I是△ABC的內(nèi)心,∠B=60°,則∠AIC=_____.2、如圖,四邊形是正方形,曲線是由一段段90度的弧組成的.其中:的圓心為點(diǎn)A,半徑為;的圓心為點(diǎn)B,半徑為;的圓心為點(diǎn)C,半徑為;的圓心為點(diǎn)D,半徑為;…的圓心依次按點(diǎn)A,B,C,D循環(huán).若正方形的邊長為1,則的長是_________.3、如圖,在Rt△ABC中,∠ACB=30°,⊙E為內(nèi)切圓,若BE=4,則△BCE的面積為___________.4、如圖,A、B、C、D為一個(gè)正多邊形的相鄰四個(gè)頂點(diǎn),O為正多邊形的中心,若∠ADB=12°,則這個(gè)正多邊形的邊數(shù)為____________5、用反證法證明:“如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行”.第一步應(yīng)假設(shè):______.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,四邊形ABCD是平行四邊形,點(diǎn)A,B,D均在圓上.請僅用無刻度的直尺分別下列要求畫圖.(1)在圖①中,若AB是直徑,CD與圓相切,畫出圓心;(2)在圖②中,若CB,CD均與圓相切,畫出圓心.2、如圖,在中,.(1)請作出經(jīng)過A、B兩點(diǎn)的圓,且該圓的圓心O落在線段AC上(尺規(guī)作圖,保留作圖痕跡,不寫做法);(2)在(1)的條件下,已知,將線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后與⊙O交于點(diǎn)E.試證明:B、C、E三點(diǎn)共線.3、如圖,正五邊形內(nèi)接于,為上的一點(diǎn)(點(diǎn)不與點(diǎn)重合),求的余角的度數(shù).4、如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),D在AB的延長線上,且∠BCD=∠A.(1)求證:CD是⊙O的切線;(2)若⊙O的半徑為3,CD=4,求BD的長.5、如圖,在⊙O中,,∠ACB=60°,求證∠AOB=∠BOC=∠COA.-參考答案-一、單選題1、D【解析】【分析】根據(jù)切線的性質(zhì)得到∠ABC=90°,根據(jù)直角三角形的性質(zhì)求出∠A,根據(jù)圓周角定理計(jì)算即可.【詳解】∵BC是⊙O的切線,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圓周角定理得,∠BOD=2∠A=80°,故選D.【考點(diǎn)】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.2、A【解析】【分析】過點(diǎn)C作CD⊥AB于點(diǎn)D,由題意易得AB=5,然后可得,進(jìn)而根據(jù)直線與圓的位置關(guān)系可求解.【詳解】解:過點(diǎn)C作CD⊥AB于點(diǎn)D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點(diǎn)為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關(guān)系為相交,故選A.【考點(diǎn)】本題主要考查直線與圓的位置關(guān)系,熟練掌握直線與圓的位置關(guān)系是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實(shí)數(shù)的大小比較,可判斷②;根據(jù)點(diǎn)在數(shù)軸上所對應(yīng)的實(shí)數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質(zhì),可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯(cuò)誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點(diǎn)所表示的數(shù)為,故本小題錯(cuò)誤;④用反證法證明命題“一個(gè)三角形最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角或三個(gè)鈍角”,故本小題錯(cuò)誤;⑤在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn),故本小題正確.故選B【考點(diǎn)】本題主要考查近似數(shù)的精確度定義,實(shí)數(shù)的大小比較,點(diǎn)在數(shù)軸上所對應(yīng)的實(shí)數(shù),反證法的概念,角平分線的性質(zhì),熟練掌握上述知識點(diǎn),是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)圓的有關(guān)性質(zhì)、垂徑定理及其推論、特殊平行四邊形的判定與性質(zhì)依次對各項(xiàng)判斷即可.【詳解】A.∵半徑平分弦,∴OB⊥AC,AB=BC,不能判斷四邊形OABC是平行四邊形,假命題;B.∵四邊形是平行四邊形,且OA=OC,∴四邊形是菱形,∴OA=AB=OB,OA∥BC,∴△OAB是等邊三角形,∴∠OAB=60o,∴∠ABC=120o,真命題;C.∵,∴∠AOC=120o,不能判斷出弦平分半徑,假命題;D.只有當(dāng)弦垂直平分半徑時(shí),半徑平分弦,所以是假命題,故選:B.【考點(diǎn)】本題主要考查命題與證明,涉及垂徑定理及其推論、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識,解答的關(guān)鍵是會利用所學(xué)的知識進(jìn)行推理證明命題的真假.5、C【解析】【分析】由點(diǎn)I是△ABC的內(nèi)心知∠BAC=2∠IAC、∠ACB=2∠ICA,從而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圓內(nèi)接四邊形的外角等于內(nèi)對角可得答案.【詳解】解:∵點(diǎn)I是△ABC的內(nèi)心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四邊形ABCD內(nèi)接于⊙O,∴∠CDE=∠B=68°,故選:C.【考點(diǎn)】本題主要考查三角形的內(nèi)切圓與內(nèi)心,解題的關(guān)鍵是掌握三角形的內(nèi)心的性質(zhì)及圓內(nèi)接四邊形的性質(zhì).二、填空題1、120°.【解析】【分析】根據(jù)三角形的內(nèi)切圓的圓心是三角形三個(gè)角的平分線的交點(diǎn)即可求解.【詳解】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的內(nèi)切圓的圓心是三角形三個(gè)角的平分線的交點(diǎn),∴∠IAC=∠BAC,∠ICA=∠BCA,∴∠IAC+∠ICA=(∠BAC+∠BCA)=60°∴∠AIC=180°﹣60°=120°故答案為120°.【考點(diǎn)】此題主要考查利用三角形的內(nèi)切圓的圓心是三角形三個(gè)角的平分線的交點(diǎn)性質(zhì)進(jìn)行角度求解,熟練掌握,即可解題.2、【解析】【分析】曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,到,,再計(jì)算弧長.【詳解】解:由圖可知,曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,,,……,,,故的半徑為,的弧長=.故答案為:.【考點(diǎn)】此題主要考查了弧長的計(jì)算,弧長的計(jì)算公式:,找到每段弧的半徑變化規(guī)律是解題關(guān)鍵.3、【解析】【分析】如圖(見解析),先根據(jù)三角形內(nèi)切圓的性質(zhì)、直角三角形的性質(zhì)、切線長定理可求出,再設(shè),利用勾股定理可求出x的值,從而可得BC的長,然后利用三角形的面積公式即可得.【詳解】如圖,設(shè)圓E與三邊的相切點(diǎn)分別為點(diǎn),連接則,且由題意得:,,圓E為的內(nèi)切圓平分,BE平分,則在中,,在中,由切線長定理得:設(shè),則,在中,由勾股定理得:即解得則的面積為故答案為:.【考點(diǎn)】本題考查了三角形內(nèi)切圓的性質(zhì)、切線長定理、圓的切線的性質(zhì)、勾股定理等知識點(diǎn),掌握理解三角形內(nèi)切圓的性質(zhì)是解題關(guān)鍵.4、15【解析】【分析】連接AO,BO,根據(jù)圓周角定理得到∠AOB=24°,根據(jù)中心角的定義即可求解.【詳解】如圖,連接AO,BO,∴∠AOB=2∠ADB=24°∴這個(gè)正多邊形的邊數(shù)為=15故答案為:15.【考點(diǎn)】此題主要考查正多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理.5、這兩條直線不平行【解析】【分析】本題需先根據(jù)已知條件和反證法的特點(diǎn)進(jìn)行證明,即可求出答案.【詳解】證明:已知兩條直線都和第三條直線平行;
假設(shè)這兩條直線不平行,則兩條直線有交點(diǎn),因?yàn)檫^直線外一點(diǎn)有且只有一條直線與已知直線平行因此,兩條直線有交點(diǎn)時(shí),它們不可能同時(shí)與第三條直線平行因此假設(shè)與結(jié)論矛盾.故假設(shè)不成立,即如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.故答案為:這兩條直線不平行.【考點(diǎn)】本題主要考查了反證法,在解題時(shí)要根據(jù)反證法的特點(diǎn)進(jìn)行證明是本題的關(guān)鍵.三、解答題1、(1)見解析;(2)見解析【解析】【分析】(1)延長CB交圓于一點(diǎn),把這點(diǎn)與點(diǎn)D連接,與AB交點(diǎn)即為圓心;(2)連接AC、BD交于點(diǎn)G,AC交圓于點(diǎn)E,射線DE交BC于F,射線FG交DA于H,連接BH交AC于O即可.【詳解】(1)如圖1所示,延長CB交圓于點(diǎn)E,連接DE,與AB交點(diǎn)即為圓心;由已知可得∠A+∠DBA=90°,∠EBA=∠C=∠A,故∠EBA+∠DBA=90°,DE為直徑;(2)如圖2所示,連接AC、BD交于點(diǎn)G,AC交圓于點(diǎn)E,射線DE交BC于F,射線FG交DA于H,連接BH交AC于O.點(diǎn)即為所求.說明:由已知可得,△ADB為等邊三角形,由作圖可知,AE為直徑,DF⊥BC,可得,F(xiàn)是BC中點(diǎn),進(jìn)而得出H是AD中點(diǎn),BH⊥AD,BH過圓心;【考點(diǎn)】本題考查了無刻度直尺作圖,解題關(guān)鍵是準(zhǔn)確理解題意,根據(jù)圓的有關(guān)性質(zhì)進(jìn)行作圖.2、(1)見解析(2)見解析【解析】【分析】(1)只需要作AB的垂直平分線,其與AC的交點(diǎn)即為圓心O,由此作圖即可;(2)先由圓周角定理求出,再由旋轉(zhuǎn)的性質(zhì)求出,從而得到,證明△OBC≌△OEC得到∠OCE=∠OCB=90°,則∠OCB+∠OCE=180°,即可證明B、C、E三點(diǎn)共線.(1)解:如圖所示,圓O即為所求;(2)解:如圖所示,連接CE,OE,∵,∴,由旋轉(zhuǎn)的性質(zhì)可知,∴,∴,在△OBC和△OEC中,,∴△OBC≌△OEC(SAS),∴∠OCE=∠OCB=90°,∴∠OCB+∠OCE=180°,∴B、C、E三點(diǎn)共線.【考點(diǎn)】本題主要考查了線段垂直平分線的尺規(guī)作圖,畫圓,圓周角定理,旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定等等,熟知性格知識是解題的關(guān)鍵.3、54°【解析】【分析】連接OC,OD.求出∠COD的度數(shù),再根據(jù)圓周角定理即可解決問題.【詳解】如圖,連接.∵五邊形是正五邊形,∴,∴,∴90°-36°=54°,∴的余角的度數(shù)為54°.【考點(diǎn)】本題考查了正多邊形和圓、圓周角定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.4、(1)證明見解析(2)2【解析】【分析】(1)連接OC,由AB是⊙O的直徑可得出∠ACB=90°,即∠ACO+∠OCB=90°,由等腰三角形的性質(zhì)結(jié)合∠BCD=∠A,即可得出∠OCD=90°,即CD是⊙O的切線;(2)在Rt△OCD中,由勾股定理可求出OD的值,進(jìn)而可得出BD的長.【詳解】解:(1)如圖,連接OC.∵AB是⊙O的直徑,C是⊙O上一點(diǎn),∴∠ACB=90°,即∠ACO+∠OCB=90°.∵OA=OC,∠BCD=∠A,∴∠ACO=∠A=∠BCD,∴∠BCD+∠OCB=90
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年福建林業(yè)職業(yè)技術(shù)學(xué)院單招職業(yè)技能考試題庫及答案詳解一套
- 2026年河南建筑職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性考試題庫及參考答案詳解1套
- 2026年內(nèi)蒙古建筑職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性考試題庫及答案詳解一套
- 2026年四川財(cái)經(jīng)職業(yè)學(xué)院單招職業(yè)適應(yīng)性考試題庫帶答案詳解
- 晉級教師面試題目及答案
- 洗衣廠送酒店床上用品安全協(xié)議書范本
- 2025年中國移動(dòng)興業(yè)分公司招聘備考題庫附答案詳解
- 2025年固定收益客需部人力資源部(黨委組織部)招聘備考題庫及答案詳解1套
- 長春光華學(xué)院2025-2026學(xué)年第一學(xué)期招聘34人備考題庫及一套參考答案詳解
- 2025年浙江工商職業(yè)技術(shù)學(xué)院公開招聘高層次、高技能人才(教師)35人備考題庫含答案詳解
- 汽車購買中介合同范本
- 合格考前一天的課件
- 宿舍心理信息員培訓(xùn)
- 2025北京市實(shí)驗(yàn)動(dòng)物上崗證試題及答案
- 鐵路車皮裝卸合同范本
- 婚紗照簽單合同模板(3篇)
- 安全班隊(duì)會課件
- 2025年70周歲以上老年人三力測試題庫及答案
- 建筑與市政工程無障礙規(guī)范詳細(xì)解讀
- 設(shè)備預(yù)防性維護(hù)知識培訓(xùn)課件
- 服裝行業(yè)財(cái)務(wù)知識培訓(xùn)課件
評論
0/150
提交評論