綜合解析京改版數(shù)學9年級上冊期末試題含答案詳解(培優(yōu)B卷)_第1頁
綜合解析京改版數(shù)學9年級上冊期末試題含答案詳解(培優(yōu)B卷)_第2頁
綜合解析京改版數(shù)學9年級上冊期末試題含答案詳解(培優(yōu)B卷)_第3頁
綜合解析京改版數(shù)學9年級上冊期末試題含答案詳解(培優(yōu)B卷)_第4頁
綜合解析京改版數(shù)學9年級上冊期末試題含答案詳解(培優(yōu)B卷)_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

京改版數(shù)學9年級上冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、把拋物線的圖象向左平移1個單位,再向上平移2個單位,所得的拋物線的函數(shù)關系式是(

)A. B. C. D.2、如圖,點A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(

)A.160o B.120o C.100o D.80o3、當0x3,函數(shù)y=﹣x2+4x+5的最大值與最小值分別是()A.9,5 B.8,5 C.9,8 D.8,44、若為銳角,,則等于(

)A. B. C. D.5、如圖,ABC是等邊三角形,點D、E分別在BC、AC上,且∠ADE=60°,AB=9,BD=3,則CE的長等于()A.1 B. C. D.26、在中,AC=4,BC=3,則cosA的值等于(

)A. B. C.或 D.或二、多選題(7小題,每小題2分,共計14分)1、如圖,在Rt△ABC中,,于點D,則下列結論正確的是(

)A. B.C. D.2、若二次函數(shù)(a是不為0的常數(shù))的圖象與x軸交于A、B兩點.則以下結論正確的有(

)A.B.當時,y隨x的增大而增大C.無論a取任何不為0的數(shù),該函數(shù)的圖象必經(jīng)過定點D.若線段AB上有且只有5個橫坐標為整數(shù)的點,則a的取值范圍是3、下列四個命題中正確的是(

)A.與圓有公共點的直線是該圓的切線B.垂直于圓的半徑的直線是該圓的切線C.到圓心的距離等于半徑的直線是該圓的切線D.過圓直徑的端點,垂直于此直徑的直線是該圓的切線4、在同一平面直角坐標系中,如圖所示,正比例函數(shù)與一次函數(shù)的圖象則二次函數(shù)的圖象可能是(

)A. B.C. D.5、如圖,在矩形ABCD中,對角線AC、BD相交于G,E為AD的中點,連接BE交AC于F,連接FD,若∠BFA=90°,則下列四對三角形中相似的為()A.△BEA與△ACD B.△FED與△DEB C.△CFD與△ABG D.△ADF與△EFD6、如圖,正方形ABCD的邊長為8,點E、F分別在邊AD、BC上,將正方形沿EF折疊,使點A落在邊CD上的A′處,點B落在B′處,A′B′交BC于點G.下列結論正確的是(

)A.當A′為CD中點時,tan∠DA′E=B.當A′D∶DE∶A′E=3∶4∶5時,A′C=C.連接AA′,則AA′=EFD.當A′(點A′不與C、D重合)在CD上移動時,△A′CG周長隨著A′位置變化而變化7、如圖,AB是圓O的直徑,點G是圓上任意一點,點C是的中點,,垂足為點E,連接GA,GB,GC,GD,BC,GB與CD交于點F,則下列表述正確的是(

)A. B.C. D.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,拋物線y=﹣x2+x+2與x軸相交于A、B兩點,與y軸相交于點C,點D在拋物線上,且CD∥AB.AD與y軸相交于點E,過點E的直線PQ平行于x軸,與拋物線相交于P,Q兩點,則線段PQ的長為_____.2、如圖,已知DC為∠ACB的平分線,DE∥BC.若AD=8,BD=10,BC=15,求EC的長=_____.3、如圖,,,是⊙O上的三個點,四邊形是平行四邊形,連接,,若,則_____.4、某圓的周長是12.56米,那么它的半徑是______________,面積是__________.5、已知函數(shù)y的圖象如圖所示,若直線y=kx﹣3與該圖象有公共點,則k的最大值與最小值的和為_____.6、如果一條拋物線與軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值為_________.7、已知二次函數(shù)與x軸有兩個交點,把當k取最小整數(shù)時的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個新圖象,若新圖象與直線有三個不同的公共點,則m的值為______.四、解答題(6小題,每小題10分,共計60分)1、渠縣是全國優(yōu)質(zhì)黃花主產(chǎn)地,某加工廠加工黃花的成本為30元/千克,根據(jù)市場調(diào)查發(fā)現(xiàn),批發(fā)價定為48元/千克時,每天可銷售500千克.為增大市場占有率,在保證盈利的情況下,工廠采取降價措施.批發(fā)價每千克降低1元,每天銷量可增加50千克.(1)寫出工廠每天的利潤元與降價元之間的函數(shù)關系.當降價2元時,工廠每天的利潤為多少元?(2)當降價多少元時,工廠每天的利潤最大,最大為多少元?(3)若工廠每天的利潤要達到9750元,并讓利于民,則定價應為多少元?2、(1)計算:.(2)解方程:.3、某商場經(jīng)營某種品牌的玩具,購進的單價是30元,根據(jù)市場調(diào)查,在一段時間內(nèi),銷售單價是40元時,銷售量是600元,而銷售單價每漲1元,就會少售出10件玩具.(1)設該種品牌玩具的銷售單價為x元,請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲利利潤W元;(2)在(1)的條件下,若商場獲利了10000元銷售利潤,求該玩具銷售單價x應定為多少元?(3)在(1)的條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于45元,且商場要完成不少于480件的銷售任務,求商場銷售該品牌玩具獲利的最大利潤是多少元?4、某公司電商平臺,在2021年五一長假期間,舉行了商品打折促銷活動,經(jīng)市場調(diào)查發(fā)現(xiàn),某種商品的周銷售量y(件)是關于售價x(元/件)的一次函數(shù),下表僅列出了該商品的售價x,周銷售量y,周銷售利潤W(元)的三組對應值數(shù)據(jù).x407090y1809030W360045002100(1)求y關于x的函數(shù)解析式(不要求寫出自變量的取值范圍);(2)若該商品進價a(元/件),售價x為多少時,周銷售利潤W最大?并求出此時的最大利潤;(3)因疫情期間,該商品進價提高了m(元/件)(),公司為回饋消費者,規(guī)定該商品售價x不得超過55(元/件),且該商品在今后的銷售中,周銷售量與售價仍滿足(1)中的函數(shù)關系,若周銷售最大利潤是4050元,求m的值.5、如圖,∠1=∠2=∠3,試找出圖中兩對相似三角形,并說明為什么?6、某廠家生產(chǎn)一批遮陽傘,每個遮陽傘的成本價是20元,試銷售時發(fā)現(xiàn):遮陽傘每天的銷售量y(個)與銷售單價x(元)之間是一次函數(shù)關系,當銷售單價為28元時,每天的銷售量為260個;當銷售單價為30元時,每天的銷售量為240個.(1)求遮陽傘每天的銷出量y(個)與銷售單價x(元)之間的函數(shù)關系式;(2)設遮陽傘每天的銷售利潤為w(元),當銷售單價定為多少元時,才能使每天的銷售利潤最大?最大利潤是多少元?-參考答案-一、單選題1、A【解析】【分析】求出原拋物線的頂點坐標,再根據(jù)向左平移橫坐標減,向上平移縱坐標加求出平移后的拋物線的頂點坐標,然后利用頂點式解析式寫出即可.【詳解】解:∵拋物線的頂點坐標為(2,1),∴向左平移1個單位,再向上平移2個單位后的頂點坐標是(1,3)∴所得拋物線解析式是.故選:A.【考點】本題考查了二次函數(shù)圖象的平移,利用頂點的變化確定拋物線解析式的變化更簡便.2、A【解析】【分析】在⊙O取點,連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對的圓心角是它所對的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點,連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對的圓心角是它所對的圓周角的2倍,掌握相關知識點是解題的關鍵.3、A【解析】【分析】利用配方法把原方程化為頂點式,再根據(jù)二次函數(shù)的性質(zhì)即可解答.【詳解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴當x=2時,最大值是9,∵0≤x≤3,∴x=0時,最小值是5,故選:A.【考點】本題考查二次函數(shù)的最值,掌握二次函數(shù)的性質(zhì)與利用配方法將一般式改為頂點式是解答本題的關鍵.4、B【解析】【分析】根據(jù)tan45°=1求出即可.【詳解】∵∠A為銳角,tanA=1,∴∠A=45°.故選B.【考點】本題考查了特殊角的三角函數(shù)值,主要考查學生的記憶能力和計算能力.5、D【解析】【分析】通過△ABD∽△DCE,可得,即可求解.【詳解】解:∵△ABC是等邊三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故選:D.【考點】本題考查了三角形的相似,做題的關鍵是△ABD∽△DCE.6、C【解析】【分析】分兩種情況:①AB為斜邊;②AC為斜邊,根據(jù)勾股定理求出AB長,然后根據(jù)余弦定義即可求解.【詳解】由題意,存在兩種情況:①當AB為斜邊時,∠C=90o,∵AC=4,BC=3,∴AB=,∴cosA=;②當AC為斜邊時,∠B=90o,∵AC=4,BC=3,∴AB=,∴cosA=,綜上,cosA的值等于或,故選:C.【考點】本題考查了勾股定理和銳角三角函數(shù)的概念,熟練掌握銳角三角函數(shù)的定義,并注意分類討論是解答本題的關鍵.二、多選題1、BC【解析】【分析】根據(jù)正切函數(shù)的定義即可一一判定.【詳解】解:,,,,,在中,,故選項A、D不正確;在中,,故選項B正確;在中,,,故選項C正確;故選:BC.【考點】本題考查了正切函數(shù)的定義和直角三角形的性質(zhì),熟練掌握和運用正切函數(shù)的定義和求法是解決本題的關鍵.2、ACD【解析】【分析】求得頂點坐標,根據(jù)題意即可判斷①正確;根據(jù)二次函數(shù)的性質(zhì)即可判斷②錯誤;二次函數(shù)是不為0的常數(shù))的頂點,即可判斷③錯誤;根據(jù)題意時,時,即可判斷④正確.【詳解】解:二次函數(shù),頂點為,在軸的下方,∵函數(shù)的圖象與軸交于、兩點,拋物線開口向上,,故①正確;時,隨的增大而增大,故②錯誤;由題意可知當,二次函數(shù)是不為0的常數(shù))的圖象一定經(jīng)過點,故③正確;線段上有且只有5個橫坐標為整數(shù)的點,且對稱軸為直線,∴當時,,當時,,,解得,故④正確;故選:ACD.【考點】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)圖象上點的坐標特征,能夠理解題意,利用二次函數(shù)的性質(zhì)解答是解題的關鍵.3、CD【解析】【分析】要正確理解切線的定義:和圓有唯一公共點的直線是圓的切線.掌握切線的判定:①經(jīng)過半徑的外端,且垂直于這條半徑的直線,是圓的切線;②到圓心的距離等于半徑的直線是該圓的切線.【詳解】解:A中,與圓有兩個公共點的直線,是圓的割線,故該選項不符合題意;B中,應經(jīng)過此半徑的外端,故該選項不符合題意;C中,根據(jù)切線的判定方法,故該選項符合題意;D中,根據(jù)切線的判定方法,故該選項符合題意.故選:CD.【考點】本題考查了切線的判定.注意掌握切線的判定定理與切線的定義是解此題的關鍵.4、BD【解析】【分析】根據(jù)正比例函數(shù)圖象和一次函數(shù)圖象可得,,然后分兩種情況討論:當時,;當時,,即可求解.【詳解】解:根據(jù)題題得:當x=-1時,正比例函數(shù)與一次函數(shù)的圖象相交,∴,,即,當時,,對于二次函數(shù),當x=-1時,,即,且,故B選項正確;當時,,對于二次函數(shù),當x=1時,,即,且,故D選項正確;故選:BD【考點】本題主要考查了一次函數(shù)的圖象和性質(zhì),二次函數(shù)的圖象和性質(zhì),熟練掌握一次函數(shù)的圖象和性質(zhì),二次函數(shù)的圖象和性質(zhì),利用分類討論思想解答是解題的關鍵.5、ABCD【解析】【分析】根據(jù)判定三角形相似的條件對選項逐一進行判斷.【詳解】解:根據(jù)題意得:∠BAE=∠ADC=∠AFE=90°∴∠AEF+∠EAF=90°,∠DAC+∠ACD=90°∴∠AEF=∠ACD∴△BEA∽△ACD;∵∠AEB=∠FEA,∠AFE=∠EAB=90°,∴△AFE∽△BAE,∴,又∵AE=ED,∴而∠BED=∠BED,∴△FED∽△DEB;∵ABCD,∴∠BAC=∠GCD,∵∠ABE=∠DAF,∠EBD=∠EDF,且∠ABG=∠ABE+∠EBD,∴∠ABG=∠DAF+∠EDF=∠DFC;∵∠ABG=∠DFC,∠BAG=∠DCF,∴△CFD∽△ABG;∵△FED∽△DEB,∴∠EFD=∠EDB,∵AG=DG,∴∠DAF=∠ADG,∴∠DAF=∠EFD,∴△ADF∽△EFD.故選:ABCD.【考點】此題考查了相似三角形的判定:①有兩個對應角相等的三角形相似;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.6、ABC【解析】【分析】A.當A′為CD中點時,設A'E=AE=x,則DE=8﹣x,根據(jù)勾股定理列出方程求解,可推出A正確;B.當△A'DE三邊之比為3:4:5時,假設A'D=3a,DE=4a,A'E=5a,根據(jù)AD=AE+DE=8,可求得a的值,進一步求得A'D=,即可判斷出B正確;C.過點E作EM⊥BC,垂足為M,連接A'A交EM,EF于點N,Q,證明△AA′D≌△EFM(ASA),即得C正確;D.過點A作AH⊥A'G,垂足為H,連接A'A,AG,先證△AA'D≌△AA'H,可得AD=AH,A'D=A'H,再證Rt△ABG≌Rt△AHG,可得HG=BG,由此證得△A'CG周長=16,即可得出D錯誤.【詳解】解:∵A′為CD中點,正方形ABCD的邊長為8,∴AD=8,A'D=CD=4,∠D=90o,∵正方形沿EF折疊,∴A'E=AE,∴設A'E=AE=x,則DE=8﹣x,∵在Rt△A'DE中,A'D2+DE2=A'E2,∴42+(8﹣x)2=x2,解得:x=5,∴AE=5,DE=3,∴tan∠DA'E=,故A正確;當△A'DE三邊之比為3:4:5時,假設A'D=3a,DE=4a,A'E=5a,則AE=A'E=5a,∵AD=AE+DE=8,∴5a+4a=8,解得:a=,∴A'D=3a=,A'C=CD﹣A'D=8﹣=,故B正確;如圖1,過點E作EM⊥BC,垂足為M,連接A'A交EM,EF于點N,Q,∴EM∥CD,EM=CD=AD,∴∠AEN=∠D=90°,由翻折可知:EF垂直平分AA′,∴∠AQE=90°,∴∠EAN+∠ANE=∠QEN+∠ANE=90°,∴∠EAN=∠QEN,在△AA'D和△EFM中,,∴△AA′D≌△EFM(ASA),∴AA'=EF,故C正確;如圖2,過點A作AH⊥A'G,垂足為H,連接A'A,AG,則∠AHA'=∠AHG=90°,∵折疊,∴∠EA'G=∠EAB=90°,A'E=AE,∵∠D=90o∴∠EAA'+∠DA'A=90o,∴∠AA'G=∠DA'A,∴△AA'D≌△AA'H(AAS),∴AD=AH,A'D=A'H,∵AD=AB,∴AH=AB,在Rt△ABG與Rt△AHG中,,∴Rt△ABG≌Rt△AHG(HL),∴HG=BG,∴△A'CG周長=A'C+A'G+CG=A'C+A'H+HG+CG=A'C+A'D+BG+CG=CD+BC=8+8=16,∴當A'在CD上移動時,△A'CG周長不變,故D錯誤.故選:ABC【考點】本題屬于幾何綜合題,考查了正方形的性質(zhì),折疊的性質(zhì),勾股定理,全等三角形的判定及性質(zhì),熟練掌握相關圖形的性質(zhì)是解決本題的關鍵.7、ACD【解析】【分析】根據(jù)垂徑定理和圓周角定理可以判斷A,根據(jù)圓周角定理可以判斷B,根據(jù)圓周角定理、垂徑定理以及等角對等邊,即可判斷C,根據(jù)圓周角定理、垂徑定理以及平行線的判定,即可判斷D.【詳解】解:∵AB是圓O的直徑,,∴,∴,故A正確;∵AB是圓O的直徑,,∴,∵,即,也沒有其他條件可以證得和的另外一組內(nèi)角對應相等,∴不能證得,故B不正確;∵點C是的中點,∴,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故C正確;∵點C是的中點,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故D正確.故選ACD.【考點】本題主要考查了垂徑定理、圓周角定理、等腰三角形的判定以及平行線的判定.三、填空題1、2【解析】【分析】利用二次函數(shù)圖象上點的坐標特征可求出點A,B,C,D的坐標,由點A,D的坐標,利用待定系數(shù)法可求出直線AD的解析式,利用一次函數(shù)圖象上點的坐標特征可求出點E的坐標,再利用二次函數(shù)圖象上點的坐標特征可得出點P,Q的坐標,進而可求出線段PQ的長.【詳解】解:當y=0時,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴點A的坐標為(﹣2,0);當x=0時,y=﹣x2+x+2=2,∴點C的坐標為(0,2);當y=2時,﹣x2+x+2=2,解得:x1=0,x2=2,∴點D的坐標為(2,2).設直線AD的解析式為y=kx+b(k≠0),將A(﹣2,0),D(2,2)代入y=kx+b,得:解得:∴直線AD的解析式為y=x+1.當x=0時,y=x+1=1,∴點E的坐標為(0,1).當y=1時,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴點P的坐標為(1﹣,1),點Q的坐標為(1+,1),∴PQ=1+﹣(1﹣)=2.故答案為:2.【考點】本題考查了拋物線與x軸的交點、二次函數(shù)圖象上點的坐標特征、待定系數(shù)法求一次函數(shù)解析式以及一次函數(shù)圖象上點的坐標特征,利用二次函數(shù)圖象上點的坐標特征求出點P,Q的坐標是解題的關鍵.2、【解析】【分析】先由角平分線的定義及平行線的性質(zhì)求得∠EDC=∠ECD,從而EC=DE;再DE∥BC,證得△ADE∽△ABC,然后根據(jù)相似三角形的性質(zhì)列出比例式,求得DE的長,即為EC的長.【詳解】解:∵DC為∠ACB的平分線∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案為:【考點】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的判定及相似三角形的判定與性質(zhì),熟練掌握相關性質(zhì)與定理是解題的關鍵.3、64【解析】【分析】先根據(jù)圓周角定理求出∠O的度數(shù),然后根據(jù)平行四邊形的對角相等求解即可.【詳解】∵,∴∠O=2,∵四邊形是平行四邊形,∴∠O=.故答案為:64.【考點】本題考查了圓周角定理,平行四變形的性質(zhì),熟練掌握圓周角定理是解答本題的關鍵.在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.4、

2米

12.56平方米【解析】【分析】根據(jù)周長公式轉化為,將C=12.56代入進行計算得到半徑,繼續(xù)利用面積公式,代入半徑的值求出面積的結果.【詳解】因為C=2πr,所以==2,所以r=2(米),因為S=πr2=3.14×22=12.56(平方米).故答案為:2米

12.56平方米.【考點】考查圓的面積和周長與半徑之間的關系,學生必須熟練掌握圓的面積和周長的求解公式,選擇相應的公式進行計算,利用公式是解題的關鍵.5、17【解析】【分析】根據(jù)題意可知,當直線經(jīng)過點(1,12)時,直線y=kx-3與該圖象有公共點;當直線與拋物線只有一個交點時,(x-5)2+8=kx-3,可得出k的最大值是15,最小值是2,即可得它們的和為17.【詳解】解:當直線經(jīng)過點(1,12)時,12=k-3,解得k=15;當直線與拋物線只有一個交點時,(x-5)2+8=kx-3,整理得x2-(10+k)x+36=0,∴10+k=±12,解得k=2或k=-22(舍去),∴k的最大值是15,最小值是2,∴k的最大值與最小值的和為15+2=17.故答案為:17.【考點】本題考查分段函數(shù)的圖象與性質(zhì),一次函數(shù)圖象上點的坐標特征,結合圖象求出k的最大值和最小值是解題的關鍵.6、2【解析】【分析】首先求出的頂點坐標和與x軸兩個交點坐標,然后根據(jù)“特征三角形”是等腰直角三角形列方程求解即可.【詳解】解:∵∴,代入得:∴拋物線的頂點坐標為∵當時,即,解得:,∴拋物線與x軸兩個交點坐標為和∵的“特征三角形”是等腰直角三角形,∴,即解得:.故答案為:2.【考點】此題考查了二次函數(shù)與x軸的交點問題,等腰直角三角形的性質(zhì),解題的關鍵是求出的頂點坐標和與x軸兩個交點坐標.7、1或【解析】【分析】先運用根的判別式求得k的取值范圍,進而確定k的值,得到拋物線的解析式,再根據(jù)折疊得到新圖像的解析式,可求出函數(shù)圖象與x軸的交點坐標,畫出函數(shù)圖象,可發(fā)現(xiàn),若直線與新函數(shù)有3個交點,可以有兩種情況:①過交點(-1,0),根據(jù)待定系數(shù)法可得m的值;②不過點(一1,0),與相切時,根據(jù)判別式解答即可.【詳解】解:∵函數(shù)與x軸有兩個交點,∴,解得,當k取最小整數(shù)時,,∴拋物線為,將該二次函數(shù)圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個新圖象,所以新圖象的解析式為(或)

:①因為為的,所以它的圖象從左到右是上升的,當它與新圖象有3個交點時它一定過,把代入得所以,②與相切時,圖象有三個交點,,,解得.故答案為:1或.【考點】本題主要考查了二次函數(shù)圖象與幾何變換、待定系數(shù)法求函數(shù)解析式等知識點,掌握分類討論和直線與拋物線相切時判別式等于零是解答本題的關鍵.四、解答題1、(1),9600;(2)降價4元,最大利潤為9800元;(3)43【解析】【分析】(1)若降價元,則每天銷量可增加千克,根據(jù)利潤公式求解并整理即可得到解析式,然后代入求出對應函數(shù)值即可;(2)將(1)中的解析式整理為頂點式,然后利用二次函數(shù)的性質(zhì)求解即可;(3)令可解出對應的的值,然后根據(jù)“讓利于民”的原則選擇合適的的值即可.【詳解】(1)若降價元,則每天銷量可增加千克,∴,整理得:,當時,,∴每天的利潤為9600元;(2),∵,∴當時,取得最大值,最大值為9800,∴降價4元,利潤最大,最大利潤為9800元;(3)令,得:,解得:,,∵要讓利于民,∴,(元)∴定價為43元.【考點】本題考查二次函數(shù)的實際應用,弄清數(shù)量關系,準確求出函數(shù)解析式并熟練掌握二次函數(shù)的性質(zhì)是解題關鍵.2、(1)10;(2)無解.【解析】【分析】(1)原式利用絕對值的代數(shù)意義,特殊角三角函數(shù)值,二次根式性質(zhì),負整數(shù)指數(shù)冪法則計算即可求出值;(2)分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】解:(1)原式;(2)去分母得:2+1?x=2x?6,解得:x=3,經(jīng)檢驗x=3是增根,分式方程無解.【考點】此題考查了解分式方程以及實數(shù)的運算,熟記特殊角三角函數(shù)值,實數(shù)的運算法則以及分式方程的解法是解本題的關鍵.3、(1),;(2)50元或80元;(3)商場銷售該品牌玩具獲利的最大利潤是10560元【解析】【分析】(1)根據(jù)銷售量與銷售單價之間的變化關系就可以直接求出y與x之間的關系式;根據(jù)銷售問題的利潤=售價-進價就可以表示出w與x之間的關系;(2)根據(jù)題意得方程求得x1=50,x2=80,于是得到結論;(3)根據(jù)銷售單價不低于45元且商場要完成不少于480件的銷售任務求得45≤x≤52,根據(jù)二次函數(shù)的性質(zhì)得到當45≤x≤52時,y隨x增大而增大,于是得到結論.【詳解】解:(1)依等量關系式“銷量=原銷量-因漲價而減少銷量,總利潤=單個利潤×銷量”可列式為:y=600-10(x-40)=-10x+1000;W=(x-30)(-10x+1000)=-10+1300x-30000(2)由題意可得:10+1300x30000=10000,解得:x=50或x=80,∴該玩具銷售單價x應定為50元或80元(3)由題意可得:,解得:45≤x≤52,W=10+1300x30000=10(+12250,∵10<0,W隨x的增大而減小,又∵45≤x≤52,∴當x=52時,W有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論