綜合解析山東省即墨市中考數(shù)學真題分類(平行線的證明)匯編綜合測評試題(含詳解)_第1頁
綜合解析山東省即墨市中考數(shù)學真題分類(平行線的證明)匯編綜合測評試題(含詳解)_第2頁
綜合解析山東省即墨市中考數(shù)學真題分類(平行線的證明)匯編綜合測評試題(含詳解)_第3頁
綜合解析山東省即墨市中考數(shù)學真題分類(平行線的證明)匯編綜合測評試題(含詳解)_第4頁
綜合解析山東省即墨市中考數(shù)學真題分類(平行線的證明)匯編綜合測評試題(含詳解)_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省即墨市中考數(shù)學真題分類(平行線的證明)匯編綜合測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,與交于點,,則的度數(shù)為()A. B. C. D.2、兩個直角三角板如圖擺放,其中,,,AB與DF交于點M.若,則的大小為(

)A. B. C. D.3、在中,若一個內(nèi)角等于另外兩個角的差,則(

)A.必有一個角等于 B.必有一個角等于C.必有一個角等于 D.必有一個角等于4、如圖,在△ABC中,點D在AB上,點E在AC上,DE∥BC.若∠A=62°,∠AED=54°,則∠B的大小為()A.54° B.62° C.64° D.74°5、如下圖,在下列條件中,能判定AB//CD的是(

)A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.∠3=∠46、如圖,將?ABCD沿對角線AC折疊,使點B落在B′處,若∠1=∠2=44°,則∠B為()A.66° B.104° C.114° D.124°7、如圖,下列推理正確的是(

)A.∵,∴ B.∵,∴C.∵,∴ D.∵,∴8、如圖,將一副直角三角板按如圖所示疊放,其中,,,則的大小是(

)A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖是利用直尺和三角板過已知直線l外一點P作直線l的平行線的方法,其理由是__________.2、如圖,在中,,和的平分線交于點,得和的平分線交于點,得和的平分線交于點,得和的平分線交于點,得,則________度.3、如圖,點O是△ABC的三條角平分線的交點,連結AO并延長交BC于點D,BM、CM分別平分∠ABC和∠ACB的外角,直線MC和直線BO交于點N,OH⊥BC于點H,有下列結論:①∠BOC+∠BMC=180°;②∠N=∠DOH;③∠BOD=∠COH;④若∠CBA=∠CAB,則MN∥AB;其中正確的有_____.(填序號)4、如圖,四邊形ABCD中,點M,N分別在AB,BC上,將沿MN翻折,得△FMN,若MF∥AD,F(xiàn)N∥DC,則∠B=___°.5、如圖,在△ABC中,∠C=62°,△ABC兩個外角的角平分線相交于G,則∠G的度數(shù)為_____.6、將△ABC沿著DE翻折,使點A落到點A′處,A′D、A′E分別與BC交于M、N兩點,且DEBC.已知∠A′NM=27°,則∠NEC=_____.7、兩條直線平行的條件(除平行線定義和平行公理推論外):兩條直線被第三條直線所截,如果___________,那么這兩條直線平行.這個判定方法可簡述為:_________,兩直線平行.三、解答題(7小題,每小題10分,共計70分)1、如圖,已知BD⊥AC,EF⊥AC,垂足分別為D、F,∠1=∠2,請將證明∠ADG=∠C過程填寫完整.證明:BD⊥AC,EF⊥AC(已知)∴∠BDC=∠EFC=90°∴BD∥∠2=∠3又∵∠1=∠2(已知)∴∠1=∠3(等量代換)∴DG∥∴∠ADG=∠C2、如圖,AB∥CD,點E是CD上一點,∠AEC=42°,EF平分∠AED交AB于點F,求∠AFE的度數(shù).3、已知:如圖,點在上,且.求證:.

4、如圖,點、、、在一條直線上,與交于點,,,求證:5、用兩種方法證明“三角形的外角和等于360°”.已知:如圖,∠BAE,∠CBF,∠ACD是△ABC的三個外角.求證:∠BAE+∠CBF+∠ACD=360°.證法1:∵________________________________________________________________,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).∵______________,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.請把證法1補充完整,并用不同的方法完成證法2.6、如圖所示,AE為△ABC的角平分線,CD為△ABC的高,若∠B=30°,∠ACB為70°.(1)求∠CAF的度數(shù);(2)求∠AFC的度數(shù).7、如圖,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度數(shù).-參考答案-一、單選題1、A【解析】【分析】先根據(jù)三角形的內(nèi)角和定理可求出,再根據(jù)平行線的性質(zhì)即可得.【詳解】故選:A.【考點】本題考查了三角形的內(nèi)角和定理、平行線的性質(zhì),熟記平行線的性質(zhì)是解題關鍵.2、C【解析】【分析】根據(jù),可得再根據(jù)三角形內(nèi)角和即可得出答案.【詳解】由圖可得∵,∴∴故選:C.【考點】本題考查了平行線的性質(zhì)和三角形的內(nèi)角和,掌握平行線的性質(zhì)和三角形的內(nèi)角和是解題的關鍵.3、D【解析】【分析】先設三角形的兩個內(nèi)角分別為x,y,則可得第三個角(180°-x-y),再分三種情況討論,即可得到答案.【詳解】設三角形的一個內(nèi)角為x,另一個角為y,則第三個角為(180°-x-y),則有三種情況:①②③綜上所述,必有一個角等于90°故選D.【考點】本題考查三角形內(nèi)角和的性質(zhì),解題的關鍵是熟練掌握三角形內(nèi)角和的性質(zhì),分情況討論.4、C【解析】【詳解】解:∵DE∥BC,∴∠C=∠AED=54°,∵∠A=62°,∴∠B=180°﹣∠A﹣∠C=64°,故選C.點睛:本題考查了平行線的性質(zhì),三角形的內(nèi)角和,熟練掌握三角形的內(nèi)角和是解題的關鍵.5、C【解析】【詳解】根據(jù)平行線的判定,可由∠2=∠3,根據(jù)內(nèi)錯角相等,兩直線平行,得到AD∥BC,由∠1=∠4,得到AB∥CD.故選C.6、C【解析】【分析】根據(jù)平行四邊形性質(zhì)和折疊性質(zhì)得∠BAC=∠ACD=∠B′AC=∠1,再根據(jù)三角形內(nèi)角和定理可得.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠ACD=∠BAC,由折疊的性質(zhì)得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°,故選C.【考點】本題考查了平行四邊形的性質(zhì)、折疊的性質(zhì)、三角形的外角性質(zhì)以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質(zhì),求出∠BAC的度數(shù)是解決問題的關鍵.7、B【解析】【分析】根據(jù)平行線的判定判斷即可.【詳解】解:A、由∠2=∠4不能推出AD∥BC,故本選項錯誤;B、∵∠1=∠3,∴AD∥BC,故本選項正確;C、由∠4+∠D=180°不能推出AD∥BC,故本選項錯誤;D、由∠4+∠B=180°不能推出AD∥BC,故本選項錯誤;故選:B.【考點】本題考查了平行線的判定的應用,注意:同旁內(nèi)角互補,兩直線平行,內(nèi)錯角相等,兩直線平行.8、C【解析】【分析】根據(jù)直角三角形的性質(zhì)可得∠BAC=45°,根據(jù)鄰補角互補可得∠EAF=135°,然后再利用三角形的外角的性質(zhì)可得∠AFD=135°+30°=165°.即可.【詳解】解:∵∠B=45°,∴∠BAC=45°,∴∠EAF=135°,∴∠AFD=135°+30°=165°,∴∠BFD=180°﹣∠AFD=15°故選:C.【考點】此題主要考查了三角形的內(nèi)角和,三角形的外角的性質(zhì),關鍵是掌握三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和.二、填空題1、同位角相等,兩直線平行.【解析】【詳解】利用三角板中兩個60°相等,可判定平行,故答案為:同位角相等,兩直線平行考點:平行線的判定2、【解析】【分析】根據(jù)角平分線的定義,由BA1平方∠ABC,A1C平分∠ACD,得∠A1CD=∠ACD,∠A1BC=∠ABC.根據(jù)三角形外角的性質(zhì),得∠A1=∠A1CD-∠A1BC,那么∠A1=∠ACD?ABC=∠A.再根據(jù)特殊到一般的數(shù)學思想解決此題.【詳解】解:∵BA1平分∠ABC,A1C平分∠ACD,∴∠A1CD=∠ACD,∠A1BC=∠ABC.∵∠A1=∠A1CD-∠A1BC,∴∠A1=∠ACD?ABC=∠A.同理可證:∠A2=∠A1.∴∠A2=?∠A=()2∠A.以此類推,∠An=()n∠A.當n=2022,∠A2021=()2022∠A=()2022?m°=()°.故答案為:.【考點】本題主要考查三角形外角的性質(zhì)、角平分線的定義,熟練掌握三角形外角的性質(zhì)、角平分線的定義是解決本題的關鍵.3、①③④【解析】【分析】由平分可知:①∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,即∠OBM=90°,∠OCM=90°,可知∠BOC+∠BMC=180°;②利用外角定理,角平分線性質(zhì)進行計算分析即可;③根據(jù)∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,可知∠BOD=∠COH;④若∠CBA=∠CAB,則∠1=∠2=∠BAC,由于∠N=∠BAC,可知∠1=∠N,即MN∥AB.【詳解】解:如圖所示,延長AC與E,∵點O是△ABC的三條角平分線的交點,BM、CM分別平分∠ABC和∠ACB的外角,∴∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,∴∠2+∠3=∠OBM=90°,∠6+∠7=∠OCM=90°,∵∠OBM+∠OCM+∠BOC+∠BMC=360°,∴∠BOC+∠BMC=180°,故①正確;∵BN平分∠ABC,CM平分∠BCE,∠N+∠2=∠7,∴∠N=∠7﹣∠2=∠BCE﹣∠ABC,∵∠BCE=∠ABC+∠BAC,∴∠N=∠BAC,∵∠ODH=∠BAD+∠ABC=∠BAC+∠ABC,OH⊥BC,∴∠DOH=90°﹣∠ODH=90°﹣∠BAC﹣∠ABC,∵∠ABC+∠BAC≠90°,∴90°﹣∠BAC﹣∠ABC≠∠BAC,∴∠N≠∠DOH,故②錯誤;∵∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,∴∠BOD=∠COH,故③正確;∵∠CBA=∠CAB,∴∠1=∠2=∠BAC,∵∠N=∠BAC,∴∠1=∠N,∴MN∥AB,故④正確,故答案為:①③④.【考點】本題主要考查的是三角形與角平分線的綜合運用,熟練掌握角平分線的性質(zhì)是解題的關鍵.4、95【解析】【詳解】∵MF//AD,F(xiàn)N//DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°.∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°.在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.故答案為:955、59°##59度【解析】【分析】先利用三角形內(nèi)角和定理求出∠CAB+∠CBA=180°-∠C=118°,從而利用三角形外角的性質(zhì)求出∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,再由角平分線的定義求出,由此求解即可.【詳解】解:∵∠C=62°,∴∠CAB+∠CBA=180°-∠C=118°,∵∠DAB=∠C+∠CBA,∠EBA=∠C+∠CAB,∴∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,∵△ABC兩個外角的角平分線相交于G,∴,,∴,∴∠G=180°-∠GAB-∠GBA=59°,故答案為:59°.【考點】本題主要考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),角平分線的定義,熟知相關知識是解題的關鍵.6、126°【解析】【分析】利用平行線的性質(zhì)求出∠DEN=27°,再利用翻折不變性得到∠AED=∠DEN=27°,再根據(jù)平角的性質(zhì)即可解決問題.【詳解】解:∵DE∥BC,∴∠DEN=∠A′NM=27°,由翻折不變性可知:∠AED=∠DEN=27°,∴∠NEC=180°﹣2×27°=126°,故答案為126°.【考點】本題考查翻折變換,平行線的性質(zhì)等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.7、

同位角相等(答案不唯一)

同位角相等(答案不唯一)【解析】【分析】根據(jù)平行線的判定定理解答即可.【詳解】兩條直線平行的條件(除平行線定義和平行公理推論外):兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行.這個判定方法可簡述為:同位角相等,兩直線平行.故答案為:同位角相等,同位角相等.【考點】本題主要考查平行線的判定定理,屬于基礎題,熟練掌握平行線的判定定理是解題關鍵.三、解答題1、垂直的定義;EF;兩直線平行,同位角相等;BC;兩直線平行,同位角相等.【解析】【分析】根據(jù)垂直求出∠BDC=∠EFC=90°,根據(jù)平行線的判定得出BD∥EF,根據(jù)平行線的性質(zhì)得出∠2=∠3,求出∠1=∠3,根據(jù)平行線的判定得出DG∥BC即可.【詳解】證明:∵BD⊥AC,EF⊥AC,∴∠BDC=∠EFC=90°,垂直的定義∴BD∥EF,∴∠2=∠3(兩直線平行,同位角相等),又∵∠1=∠2(已知)∴∠1=∠3(等量代換)∴DG∥BC,∴∠ADG=∠C.兩直線平行,同位角相等【考點】本題考查了平行線的性質(zhì)和判定,能熟練地運用定理進行推理是解此題的關鍵,注意:平行線的性質(zhì)有:①兩直線平行,同位角相等,②兩直線平行,內(nèi)錯角相等,③兩直線平行,同旁內(nèi)角互補,反之亦然.2、∠AFE=69°.【解析】【分析】由平角求出∠AED的度數(shù),由角平分線得出∠DEF的度數(shù),再由平行線的性質(zhì)即可求出∠AFE的度數(shù).【詳解】解:∵∠AEC=42°,∴∠AED=180°-∠AEC=138°.∵EF平分∠AED,∴∠DEF=∠AED=69°.∵AB∥CD,∴∠AFE=∠DEF=69°.3、見解析.【解析】【分析】根據(jù)三角形內(nèi)角和定理結合已知條件求出∠A+∠C=180°即可得出結論.【詳解】解:∵,∴∠C=180°-(∠CED+∠D)=180°-∠A,∴∠A+∠C=180°,∴AB∥CD.【考點】本題考查了三角形內(nèi)角和定理以及平行線的判定,比較基礎,熟練掌握相關性質(zhì)定理即可解題.4、證明見解析【解析】【分析】根據(jù)同位角相等,兩直線平行可得AE//BF,進而可得∠E=∠2,由CE//DF可得∠F=∠2,最后根據(jù)等量代換即可證明結論.【詳解】∵,∴,∴.∵CE//DF,∴.∴.【考點】本題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定定理與性質(zhì)定理是解題的關鍵.5、證法1:平角等于180°;∠1+∠2+∠3=180°;證法二見解析【解析】【詳解】試題分析:證法1:根據(jù)平角的定義得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根據(jù)三角形內(nèi)角和定理和角的和差關系即可得到結論;證法2:要求證∠BAE+∠CBF+∠ACD=360°,根據(jù)三角形外角性質(zhì)得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,則∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根據(jù)三角形內(nèi)角和定理即可得到結論.試題解析:證法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=36

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論