綜合解析山東省鄒城市中考數(shù)學(xué)真題分類(平行線的證明)匯編定向練習(xí)試題(含答案解析版)_第1頁
綜合解析山東省鄒城市中考數(shù)學(xué)真題分類(平行線的證明)匯編定向練習(xí)試題(含答案解析版)_第2頁
綜合解析山東省鄒城市中考數(shù)學(xué)真題分類(平行線的證明)匯編定向練習(xí)試題(含答案解析版)_第3頁
綜合解析山東省鄒城市中考數(shù)學(xué)真題分類(平行線的證明)匯編定向練習(xí)試題(含答案解析版)_第4頁
綜合解析山東省鄒城市中考數(shù)學(xué)真題分類(平行線的證明)匯編定向練習(xí)試題(含答案解析版)_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山東省鄒城市中考數(shù)學(xué)真題分類(平行線的證明)匯編定向練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、在中,,則為(

)三角形.A.銳角 B.直角 C.鈍角 D.等腰2、如圖,不能判定AB∥CD的是(

)A.∠B=∠DCE B.∠A=∠ACDC.∠B+∠BCD=180° D.∠A=∠DCE3、如圖,、都是的角平分線,且,則(

)A.45° B.50° C.65° D.70°4、將一副三角板的直角頂點(diǎn)重合按如圖放置,小明得到下列結(jié)論:①如果∠2=30°,則AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,則∠2=30°;④如果∠CAD=150°,則∠4=∠C.其中正確的結(jié)論有()A.①② B.①②③ C.①③④ D.①②④5、一個(gè)缺角的三角形ABC殘片如圖所示,量得∠A=60°,∠B=75°,則這個(gè)三角形殘缺前的∠C的度數(shù)為()A.75° B.60° C.45° D.40°6、如圖,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,則∠AEB的度數(shù)為()A.100° B.110° C.120° D.130°7、如圖,平面上直線a、b分別經(jīng)過線段OK的兩個(gè)端點(diǎn),則直線a、b相交所成的銳角的度數(shù)是(

)A.20° B.30°C.70° D.80°8、將一副三角板按如圖所示的方式放置,,,,且點(diǎn)在上,點(diǎn)在上,AC∥EF,則的度數(shù)為(

)A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,在△ABC中,∠A=60°,BD、CD分別平分∠ABC、∠ACB,M、N、Q分別在DB、DC、BC的延長線上,BE、CE分別平分∠MBC、∠BCN,BF、CF分別平分∠EBC、∠ECQ,則∠F=________.2、如圖,AF,AD分別是△ABC的高和角平分線,且∠B=36°,∠C=76°,則∠DAF=_____度.3、命題“互為相反數(shù)的兩個(gè)數(shù)的和為零”的條件是______,結(jié)論是______.4、把“對頂角相等”改寫成“如果…那么…”的形式____________________________________________.5、如圖所示,請你填寫一個(gè)適當(dāng)?shù)臈l件:_____,使AD∥BC.6、如圖,AB⊥BC于B,AB⊥AD于A,則∠C和∠D的關(guān)系是____.7、如圖,如果∠A+_____=180°,那么AD//BC.三、解答題(7小題,每小題10分,共計(jì)70分)1、已知:如圖,A、F、C、D在同一直線上,AB∥DE,AB=DE,AF=CD,求證:(1)BC=EF;(2)BC∥EF.2、已知ABCD,解決下列問題:(1)如圖①,寫出∠ABE、∠CDE和∠E之間的數(shù)量關(guān)系,并說明理由;(2)如圖②,BP、DP分別平分∠ABE、∠CDE,若∠E=100°,求∠P的度數(shù).3、如圖,直線EF∥GH,點(diǎn)A在EF上,AC交GH于點(diǎn)B,若∠FAC=72°,∠ACD=58°,點(diǎn)D在GH上,求∠BDC的度數(shù).4、如圖(1)所示的圖形,像我們常見的學(xué)習(xí)用品——圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個(gè)簡單的圖形中,到底隱藏了哪些數(shù)學(xué)知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;(2)請你直接利用以上結(jié)論,解決以下三個(gè)問題:①如圖(2),把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、圖(1)XZ恰好經(jīng)過點(diǎn)B、C,若∠A=50°,則∠ABX+∠ACX=__________°;②如圖(3)DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數(shù);(寫出解答過程)③如圖(4),∠ABD,∠ACD的10等分線相交于點(diǎn)G1、G2、G9,若∠BDC=140°,∠BG1C=77°,則∠A的度數(shù)=__________°.5、如圖,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于點(diǎn)E.P是邊BC上的動(dòng)點(diǎn)(不與B,C重合),連結(jié)AP,將△APC沿AP翻折得△APD,連結(jié)DC,記∠BCD=α.(1)如圖,當(dāng)P與E重合時(shí),求α的度數(shù).(2)當(dāng)P與E不重合時(shí),記∠BAD=β,探究α與β的數(shù)量關(guān)系.6、已知:如圖,點(diǎn)A、B、C在一條直線上,AD∥BE,∠1=∠2,求證:∠A=∠E.7、如圖所示,已知BO、CO分別是∠ABC與∠ACB的平分線,DE過O點(diǎn)且與BC平行.(1)若∠ABC=52°,∠ACB=60°,求∠BOC的大?。?2)若∠A=60°,求∠BOC的大小;(3)直接寫出∠A與∠BOC的關(guān)系是∠BOC=.(用∠A表示出來)-參考答案-一、單選題1、B【解析】【分析】根據(jù)分別設(shè)出三個(gè)角的度數(shù),再根據(jù)三角形的內(nèi)角和為180°列出一個(gè)方程,解此方程即可得出答案.【詳解】∵∴可設(shè)∠A=x,∠B=2x,∠C=3x根據(jù)三角形的內(nèi)角和可得:x+2x+3x=180°解得:x=30°∴∠A=30°,∠B=60°,∠C=90°因此△ABC是直角三角形故答案選擇B.【考點(diǎn)】本題主要考查的是三角形的基本概念.2、D【解析】【分析】利用平行線的判定方法一一判斷即可.【詳解】解:由∠B=∠DCE,根據(jù)同位角相等兩直線平行,即可判斷AB∥CD.由∠A=∠ACD,根據(jù)內(nèi)錯(cuò)角相等兩直線平行,即可判斷AB∥CD.由∠B+∠BCD=180°,根據(jù)同旁內(nèi)角互補(bǔ)兩直線平行,即可判斷AB∥CD.故A,B,C不符合題意,故選:D.【考點(diǎn)】本題考查平行線的判定,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.3、B【解析】【分析】由三角形內(nèi)角和定理解得,再根據(jù)角平分線的性質(zhì)解得,最后根據(jù)三角形內(nèi)角和定理解答即可.【詳解】解:、都是的角平分線,故選:B.【考點(diǎn)】本題考查角平分線的性質(zhì)、三角形內(nèi)角和定理等知識,是基礎(chǔ)考點(diǎn),掌握相關(guān)知識是解題關(guān)鍵.4、D【解析】【分析】根據(jù)平行線的性質(zhì)和判定和三角形內(nèi)角和定理逐個(gè)判斷即可.【詳解】解:∵∠2=30°,∠CAB=90°,∴∠1=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE,故①正確;∵∠CAB=∠DAE=90°,∴∠BAE+∠CAD=90°-∠1+90°+∠1=180°,故②正確;∵BC∥AD,∠B=45°,∴∠3=∠B=45°,∵∠2+∠3=∠DAE=90°,∴∠2=45°,故③錯(cuò)誤;∵∠CAD=150°,∠BAE+∠CAD=180°,∴∠BAE=30°,∵∠E=60°,∴∠BOE=∠BAE+∠E=90°,∴∠4+∠B=90°,

∵∠B=45°,∴∠4=45°,∵∠C=45°,∴∠4=∠C,故④正確;所以其中正確的結(jié)論有①②④.故選:D.【考點(diǎn)】本題考查了三角形的內(nèi)角和定理和平行線的性質(zhì)和判定,能靈活運(yùn)用定理進(jìn)行推理是解此題的關(guān)鍵.5、C【解析】【分析】利用三角形內(nèi)角和定理求解即可.【詳解】因?yàn)槿切蝺?nèi)角和為180°,且∠A=60°,∠B=75°,所以∠C=180°–60°–75°=45°.【考點(diǎn)】三角形內(nèi)角和定理是??嫉闹R點(diǎn).6、B【解析】【分析】根據(jù)兩直線平行,可得∠BAD=∠ABE=20°,因?yàn)锽E平分∠ABC,所以∠ABE=∠EBC=20°,所以得到∠ABC=40°,從而求出∠EAB=50°,根據(jù)三角形內(nèi)角和即可得到∠AEB的度數(shù).【詳解】解:∵BE∥AD∴∠BAD=∠ABE=20°∵BE平分∠ABC∴∠ABE=∠EBC=20°∴∠ABC=40°∵∠C=90°∴∠EAB=50°∴∠AEB=180°-∠EAB-∠ABE=180°-50°-20°=110°故選B.【考點(diǎn)】本題考查了平行線的性質(zhì),角平分線和三角形內(nèi)角和,能夠找出內(nèi)錯(cuò)角以及熟悉三角形內(nèi)角和為180°是解決本題的關(guān)鍵.7、B【解析】【分析】根據(jù)三角形的外角的性質(zhì)列式計(jì)算即可.【詳解】解:如圖:由三角形的外角的性質(zhì)可知,∠OFK+70°=100°,解得,∠OFK=30°,故選B.【考點(diǎn)】本題考查的是三角形的外角的性質(zhì),掌握三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.8、C【解析】【分析】根據(jù)平行線的性質(zhì)和三角形的內(nèi)角和定理即可得到結(jié)論.【詳解】∵AC∥EF,∴∠DBE=∠C=45°,∴∠FBD=135°,∵∠E=60°,∠EDF=90°,∴∠F=30°,∴∠FDC=∠F+∠FBD=30°+135°=165°,故選:C.【考點(diǎn)】本題考查了三角形的內(nèi)角和定理,平行線的性質(zhì),正確的識別圖形是解題的關(guān)鍵.二、填空題1、15°##15度【解析】【分析】先由BD、CD分別平分∠ABC、∠ACB得到∠DBC=∠ABC,∠DCB=∠ACB,在△ABC中根據(jù)三角形內(nèi)角和定理得∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=60°,則根據(jù)平角定理得到∠MBC+∠NCB=300°;再由BE、CE分別平分∠MBC、∠BCN得∠5+∠6=∠MBC,∠1=∠NCB,兩式相加得到∠5+∠6+∠1=(∠NCB+∠NCB)=150°,在△BCE中,根據(jù)三角形內(nèi)角和定理可計(jì)算出∠E=30°;再由BF、CF分別平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根據(jù)三角形外角性質(zhì)得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代換得到∠2=∠5+∠F,2∠2=2∠5+∠E,再進(jìn)行等量代換可得到∠F=∠E.【詳解】解:如圖:∵BD、CD分別平分∠ABC、∠ACB,∠A=60°,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分別平分∠MBC、∠BCN,∴∠5+∠6=∠MBC,∠1=∠NCB,∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,∴∠E=180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF、CF分別平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=∠E=×30°=15°.故答案為:15°.【考點(diǎn)】本題考查了三角形內(nèi)角和定理、角平分線、三角形外角性質(zhì),解題的關(guān)鍵是掌握三角形內(nèi)角和是180°.2、20【解析】【分析】根據(jù)角平分線的定義和高的定義結(jié)合三角形的內(nèi)角和定理來解答.【詳解】解:∵∠B=36°,∠C=76°,∴∠BAC=180﹣∠B﹣∠C=180°﹣76°﹣36°=68°,又∵AD是∠BAC的平分線,∴∠CAD=68°×=34°,在Rt△AFC中,∠FAC=90﹣∠C=90°﹣76°=14°,于是∠DAF=34°﹣14°=20°.故答案為:20.【考點(diǎn)】本題主要考查了角平分線、三角形高的定義和三角形的內(nèi)角和定理.3、

互為相反數(shù)的兩個(gè)數(shù)相加

和為零【解析】【分析】根據(jù)命題的組成,把命題寫成“如果……那么……”形式,“如果”后面的是條件,“那么”后面的是結(jié)論,就可以得到命題的條件和結(jié)論.【詳解】解:把命題“互為相反數(shù)的兩個(gè)數(shù)的和為零”寫成“如果……那么……”形式,即“如果互為相反數(shù)的兩個(gè)數(shù)相加,那么和為零”,條件:互為相反數(shù)的兩個(gè)數(shù)相加,結(jié)論:和為零.【考點(diǎn)】本題考查了命題與定理的知識點(diǎn),把命題寫成“如果……那么……”形式,了解“如果”后面的是條件,“那么”后面的是結(jié)論是解題的關(guān)鍵.4、如果兩個(gè)角是對頂角,那么它們相等【解析】【分析】先找到命題的題設(shè)和結(jié)論,再寫成“如果…那么…”的形式.【詳解】解:∵原命題的條件是:“兩個(gè)角是對頂角”,結(jié)論是:“它們相等”,∴命題“對頂角相等”寫成“如果…那么…”的形式為:“如果兩個(gè)角是對頂角,那么它們相等”.故答案為:如果兩個(gè)角是對頂角,那么它們相等.【考點(diǎn)】本題考查了命題的條件和結(jié)論的敘述,注意確定一個(gè)命題的條件與結(jié)論的方法是首先把這個(gè)命題寫成:“如果…,那么…”的形式.5、∠FAD=∠FBC(答案不唯一)【解析】【詳解】根據(jù)同位角相等,兩直線平行,可填∠FAD=∠FBC;根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,可填∠ADB=∠DBC;根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行,可填∠DAB+∠ABC=180°.故答案為:∠FAD=∠FBC;或∠ADB=∠DBC;或∠DAB+∠ABC=180°.6、互補(bǔ)【解析】【詳解】因?yàn)锳B⊥BC,AB⊥AD,所以,所以AD//BC,所以,即∠C和∠D的關(guān)系是互補(bǔ).故答案:互補(bǔ).7、∠B【解析】【分析】根據(jù)平行線的判定定理即可得到結(jié)論.【詳解】解:∵∠A+∠B=180°,∴.故答案為:∠B.【考點(diǎn)】本題考查了平行線的判定定理,熟練掌握平行線的判定定理是解題的關(guān)鍵.三、解答題1、(1)證明見解析(2)證明見解析【解析】【分析】(1)根據(jù)平行線的性質(zhì)和全等三角形的判定和性質(zhì)解答即可.(2)根據(jù)全等三角形的性質(zhì)和平行線的判定解答即可.(1)證明:(1),,,,在與中,,.(2)(2),,.【考點(diǎn)】考查了全等三角形的判定與性質(zhì)、平行線的判定與性質(zhì)等知識,證明三角形全等是解決問題的關(guān)鍵.2、(1)∠ABE+∠CDE+∠DEB=360°,理由見解析(2)130°【解析】【分析】(1)過E作EF∥AB,根據(jù)平行線的性質(zhì)即可得出結(jié)論;(2)根據(jù)得出三角關(guān)系,以及角平分線定義求出四邊形PBED中的三個(gè)角,進(jìn)而利用四邊形內(nèi)角和求出所求角的度數(shù)即可.(1)根據(jù)題意得:∠ABE+∠CDE+∠E=360°,理由如下:過E作EF∥AB,∴∠FEB+∠EBA=180°,∵CD∥AB,EF∥AB,∴CD∥EF,∴∠CDE+∠DEF=180°,∴∠CDE+∠DEB+∠ABE=360°,故答案為:∠ABE+∠CDE+∠E=360°;(2)∵BP、DP分別平分∠ABE、∠CDE,∴∠EDP∠CDE,∠EBP∠ABE,即∠CDE=2∠EDP,∠ABE=2∠EBP,代入(1)的等式得:2∠EBP+2∠EDP+∠E=360°,∵∠E=100°,∴∠EBP+∠EDP=180°∠E=130°,在四邊形PBED中,∠P=360°﹣(∠EBP+∠EDP+∠E)=360°﹣(130°+100°)=130°.【考點(diǎn)】本題考查平行線的性質(zhì)和角平分線的性質(zhì);熟練掌握平行線的性質(zhì)和角平分線的性質(zhì)的運(yùn)用是解決本題的關(guān)鍵.3、50°.【解析】【詳解】試題分析:由平行線的性質(zhì)求出∠ABD=108°,由三角形的外角性質(zhì)得出∠ABD=∠ACD+∠BDC,即可求出∠BDC的度數(shù).試題解析:∵EF∥GH,∴∠ABD+∠FAC=180°,∴∠ABD=180°﹣72°=108°,∵∠ABD=∠ACD+∠BDC,∴∠BDC=∠ABD﹣∠ACD=108°﹣58°=50°.考點(diǎn):平行線的性質(zhì).4、(1)∠BDC=∠A+∠B+∠C,詳見解析;(2)①40;②∠DCE=90°;③70【解析】【分析】(1)根據(jù)題意觀察圖形連接AD并延長至點(diǎn)F,根據(jù)一個(gè)三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角的和可證∠BDC=∠BDF+∠CDF;(2)①由(1)的結(jié)論可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②結(jié)合圖形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的結(jié)論可知∠DCE=(∠ADB+∠AEB)+∠A,易得答案.③由②方法,進(jìn)而可得答案.【詳解】解:(1)連接AD并延長至點(diǎn)F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD.∵∠BAC=∠BAD+∠CAD;∴∠BDC=∠BAC+∠B+∠C;(2)①由(1)的結(jié)論易得:∠ABX+∠ACX+∠A=∠BXC,∵∠A=50°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣50°=40°.故答案是:40;②由(1)的結(jié)論易得∠DBE=∠DAE+∠ADB+∠AEB,∠DCE=∠ADC+∠AEC+∠A∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°;∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=∠ADB,∠AEC=∠AEB∴∠DCE=(∠ADB+∠AEB)+∠A=40°+50°=90°;③由②知,∠BG1C=(∠ABD+∠ACD)+∠A,∵∠BG1C=77°,∴設(shè)∠A為x°,∵∠ABD+∠ACD=140°﹣x°,∴(140﹣x)+x=77,∴14﹣x+x=77,∴x=70,∴∠A為70°.故答案是:70.【考點(diǎn)】本題考查三角形外角的性質(zhì),三角形的內(nèi)角和定理的應(yīng)用,能求出∠BDC=∠A+∠B+∠C是解答的關(guān)鍵,注意:三角形的內(nèi)角和等于180°,三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.5、(1)25°(2)①當(dāng)點(diǎn)P在線段BE上時(shí),2α-β=50°;②當(dāng)點(diǎn)P在線段CE上時(shí),2α+β=50°【解析】【分析】(1)由∠B=40°,∠ACB=90°,得∠BAC=50°,根據(jù)AE平分∠BAC,P與E重合,可得∠ACD,從而α=∠ACB?∠ACD;(2)分兩種情況:①當(dāng)點(diǎn)P在線段BE上時(shí),可得∠ADC=∠ACD=90°?α,根據(jù)∠ADC+∠BAD=∠B+∠BCD,即可得2α?β=50°;②當(dāng)點(diǎn)P在線段CE上時(shí),延長AD交BC于點(diǎn)F,由∠ADC=∠ACD=90°?α,∠ADC=∠AFC+α=∠ABC+∠BAD+α可得90°?α=40°+α+β,即2α+β=50°.(1)解:∵∠B=40°,∠ACB=90°,∴∠BAC=50°,∵AE平分∠BAC,∴∠EAC=∠BAC=25°,∵P與E重合,∴D在AB邊上,AE⊥CD,∴∠ACD=65°,∴α=∠ACB-∠ACD=25°;(2)①如圖1,當(dāng)點(diǎn)P在線段BE上時(shí),∵∠ADC=∠ACD=90°-α,∠ADC+∠BAD=∠B+∠BCD,∴90°-α+β=40°+α,∴2α-β=50°;②如圖2,當(dāng)點(diǎn)P在線段CE上時(shí),延長AD交BC于點(diǎn)F,∵∠ADC=∠ACD=90°-α,∠ADC=∠AFC+α=∠ABC+∠BAD+α=40°+α+β,∴90°-α=40°+α

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論