重難點解析滬科版9年級下冊期末試題含完整答案詳解(易錯題)_第1頁
重難點解析滬科版9年級下冊期末試題含完整答案詳解(易錯題)_第2頁
重難點解析滬科版9年級下冊期末試題含完整答案詳解(易錯題)_第3頁
重難點解析滬科版9年級下冊期末試題含完整答案詳解(易錯題)_第4頁
重難點解析滬科版9年級下冊期末試題含完整答案詳解(易錯題)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列圖形中,可以看作是中心對稱圖形的是()A. B.C. D.2、下列圖形中,既是中心對稱圖形又是抽對稱圖形的是()A. B. C. D.3、若的圓心角所對的弧長是,則此弧所在圓的半徑為()A.1 B.2 C.3 D.44、如圖,ABCD是正方形,△CDE繞點C逆時針方向旋轉90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形5、在平面直角坐標系中,已知點與點關于原點對稱,則的值為()A.4 B.-4 C.-2 D.26、如圖,AB為的直徑,,,劣弧BC的長是劣弧BD長的2倍,則AC的長為()A. B. C.3 D.7、下列圖形中,既是中心對稱圖形也是軸對稱圖形的是()A. B. C. D.8、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、在同一平面上,外有一點P到圓上的最大距離是8cm,最小距離為2cm,則的半徑為______cm.2、如圖,在中,,,.繞點B順時針方向旋轉45°得到,點A經過的路徑為弧,點C經過的路徑為弧,則圖中陰影部分的面積為______.(結果保留)3、如圖,AB為⊙O的弦,∠AOB=90°,AB=a,則OA=______,O點到AB的距離=______.4、在一個暗箱里放入除顏色外其它都相同的1個紅球和11個黃球,攪拌均勻后隨機任取一球,取到紅球的概率是_____.5、在平面直角坐標系中,將點繞坐標原點順時針旋轉后得到點Q,則點Q的坐標是___________.6、把一個正六邊形繞其中心旋轉,至少旋轉________度,可以與自身重合.7、一個不透明的袋子裝有除顏色外其余均相同的2個紅球和m個黃球,隨機從袋中摸出個球記錄下顏色,再放回袋中搖勻大量重復試驗后,發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.2附近,則m的值為_________.三、解答題(7小題,每小題0分,共計0分)1、如圖,正方形ABCD是半徑為R的⊙O內接四邊形,R=6,求正方形ABCD的邊長和邊心距.2、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點D,點E在AC上,以AE為直徑的⊙O經過點D.(1)求證:①BC是⊙O的切線;②;(2)若點F是劣弧AD的中點,且CE=3,試求陰影部分的面積.3、如圖,AB是⊙O的直徑,點D,E在⊙O上,四邊形BDEO是平行四邊形,過點D作交AE的延長線于點C.(1)求證:CD是⊙O的切線.(2)若,求陰影部分的面積.4、如圖,是的弦,是上的一點,且,于點,交于點.若的半徑為6,求弦的長.5、如圖,已知AB是的直徑,點D為弦BC中點,過點C作切線,交OD延長線于點E,連結BE,OC.(1)求證:.(2)求證:BE是的切線.6、在正方形ABCD中,過點B作直線l,點E在直線l上,連接CE,DE,其中,過點C作于點F,交直線l于點H.(1)當直線l在如圖①的位置時①請直接寫出與之間的數(shù)量關系______.②請直接寫出線段BH,EH,CH之間的數(shù)量關系______.(2)當直線l在如圖②的位置時,請寫出線段BH,EH,CH之間的數(shù)量關系并證明;(3)已知,在直線l旋轉過程中當時,請直接寫出EH的長.7、一個不透明的口袋中有四個分別標號為1,2,3,4的完全相同的小球,從中隨機摸取兩個小球.(1)請列舉出所有可能結果;(2)求取出的兩個小球標號和等于5的概率.-參考答案-一、單選題1、C【分析】根據(jù)中心對稱圖形的定義進行逐一判斷即可.【詳解】解:A、不是中心對稱圖形,故此選項不符合題意;B、不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,故此選項符合題意;D、不是中心對稱圖形,故此選項不符合題意;故選C.【點睛】本題主要考查了中心對稱圖形的識別,解題的關鍵在于能夠熟練掌握中心對稱圖形的定義:把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心.2、B【詳解】解:.是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;.既是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;.是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;.不是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;故選:B.【點睛】本題主要考查了中心對稱圖形和軸對稱圖形的概念,解題的關鍵是判斷軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合;判斷中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.3、C【分析】先設半徑為r,再根據(jù)弧長公式建立方程,解出r即可【詳解】設半徑為r,則周長為2πr,120°所對應的弧長為解得r=3故選C【點睛】本題考查弧長計算,牢記弧長公式是本題關鍵.4、D【分析】根據(jù)旋轉的性質推出相等的邊CE=CF,旋轉角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點C逆時針方向旋轉90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點睛】本題主要考查旋轉的性質,掌握圖形旋轉前后的大小和形狀不變是解決問題的關鍵.5、C【分析】根據(jù)關于原點對稱的點的坐標特點:兩個點關于原點對稱時,它們的坐標符號相反即可得到答案.【詳解】解:點與點關于原點對稱,,,.故選:C.【點睛】此題主要考查了原點對稱點的坐標特點,解題的關鍵是掌握點的變化規(guī)律.6、D【分析】連接,根據(jù)求得半徑,進而根據(jù)的長,勾股定理的逆定理證明,根據(jù)弧長關系可得,即可證明是等邊三角形,求得,進而由勾股定理即可求得【詳解】如圖,連接,,是直角三角形,且是等邊三角形是直徑,故選D【點睛】本題考查了弧與圓心角的關系,直徑所對的圓周角是90度,勾股定理,等邊三角形的判定,求得的長是解題的關鍵.7、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,不是軸對稱圖形,故此選項不符合題意;D、是中心對稱圖形,不是軸對稱圖形,故此選項不符合題意.故選:A.【點睛】本題考查中心對稱圖形和軸對稱圖形的知識,關鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合.8、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關鍵.二、填空題1、5或3【分析】分點P在圓內或圓外進行討論.【詳解】解:①當點P在圓內時,⊙O的直徑長為8+2=10(cm),半徑為5cm;②當點P在圓外時,⊙O的直徑長為8-2=6(cm),半徑為3cm;綜上所述:⊙O的半徑長為5cm或3cm.故答案為:5或3.【點睛】本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.2、##【分析】設與AC相交于點D,過點D作,垂足為點E,根據(jù)勾股定理逆定理可得為直角三角形,根據(jù)三邊關系可得,根據(jù)題意及等角對等邊得出,在中,利用正弦函數(shù)可得,結合圖形,利用扇形面積公式及三角形面積公式求解即可得.【詳解】解:設與AC相交于點D,過點D作,垂足為點E,∵,,,∴,∴為直角三角形,∴,∵繞點B順時針方向旋轉45°得到,∴,∴,∴,在中,,∴,∴,∴,,,,,故答案為:.【點睛】題目主要考查勾股定理逆定理,旋轉的性質,等角對等邊的性質,正切函數(shù),扇形面積等,理解題意,結合圖形,綜合運用這些知識點是解題關鍵.3、【分析】過O作OC垂直于弦AB,利用垂徑定理得到C為AB的中點,然后由OA=OB,且∠AOB為直角,得到三角形OAB為等腰直角三角形,由斜邊AB的長,利用勾股定理求出直角邊OA的長即可;再由C為AB的中點,由AB的長求出AC的長,在直角三角形OAC中,由OA及AC的長,利用勾股定理即可求出OC的長,即為O點到AB的距離.【詳解】解:過O作OC⊥AB,則有C為AB的中點,∵OA=OB,∠AOB=90°,AB=a,∴根據(jù)勾股定理得:OA2+OB2=AB,∴OA=,在Rt△AOC中,OA=,AC=AB=,根據(jù)勾股定理得:OC==.故答案為:;【點睛】此題考查了垂徑定理,等腰直角三角形的性質,以及勾股定理,在圓中遇到弦,常常過圓心作弦的垂線,根據(jù)近垂徑定理由垂直得中點,進而由弦長的一半,圓的半徑及弦心距構造直角三角形,利用勾股定理來解決問題.4、【分析】由題意可知,共有12個球,取到每個球的機會均等,根據(jù)概率公式解題.【詳解】解:P(紅球)=故答案為:【點睛】本題考查簡單事件的概率,是基礎考點,掌握相關知識是解題關鍵.5、【分析】繞坐標原點順時針旋轉即關于原點中心對稱,找到關于原點中心對稱的點的坐標即可,根據(jù)關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù),即可求解.【詳解】解:將點繞坐標原點順時針旋轉后得到點Q,則點Q的坐標是故答案為:【點睛】本題考查了求一個點關于原點中心對稱的點的坐標,掌握關于原點中心對稱的點的坐標特征是解題的關鍵.關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù).6、60【分析】正六邊形連接各個頂點和中心,這些連線會將360°分成6分,每份60°因此至少旋轉60°,正六邊形就能與自身重合.【詳解】360°÷6=60°故答案為:60【點睛】本題考查中心對稱圖形的性質,根據(jù)圖形特征找到最少旋轉度數(shù)是本題關鍵.7、8【分析】首先根據(jù)題意可取確定摸出紅球的概率為0.2,然后根據(jù)概率公式建立方程求解即可.【詳解】解:∵大量重復試驗后,發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.2附近,∴摸出紅球的概率為0.2,由題意,,解得:,經檢驗,是原方程的解,且符合題意,故答案為:8.【點睛】本題考查由頻率估計概率,以及已知概率求數(shù)量;大量重復試驗后,某種情況出現(xiàn)的頻率穩(wěn)定在某個值附近時,這個值即為該事件發(fā)生的概率,掌握概率公式是解題關鍵.三、解答題1、邊長為,邊心距為【分析】過點O作OE⊥BC,垂足為E,利用圓內接四邊形的性質求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根據(jù)勾股定理求出OE、BE即可.【詳解】解:過點O作OE⊥BC,垂足為E,∵正方形ABCD是半徑為R的⊙O內接四邊形,R=6,∴∠BOC==90°,∠OBC=45°,OB=OC=6,∴BE=OE.在Rt△OBE中,∠BEO=90°,由勾股定理可得∵OE2+BE2=OB2,∴OE2+BE2=36,∴OE=BE=,∴BC=2BE=,即半徑為6的圓內接正方形ABCD的邊長為,邊心距為.【點睛】本題考查了圓內接四邊形的性質,以及勾股定理,正多邊形各邊所對的外接圓的圓心角都相等,正多邊形每一邊所對的外接圓的圓心角叫做正多邊形的中心角,正n邊形每個中心角都等于.2、(1)①見解析;②見解析;(2).【分析】(1)①連接OD,由角平分線的性質解得,再根據(jù)內錯角相等,兩直線平行,證明,繼而由兩直線平行,同旁內角互補證明即可解題;②連接DE,由弦切角定理得到,再證明,由相似三角形對應邊成比例解題;(2)證明是等邊三角形,四邊形DOAF是菱形,,結合扇形面積公式解題.【詳解】解:(1)①連接OD,是∠BAC的平分線是⊙O的切線;②連接DE,是⊙O的切線,是直徑(2)連接DE、OD、DF、OF,設圓的半徑為R,點F是劣弧AD的中點,OF是DA中垂線DF=AF,是等邊三角形,四邊形DOAF是菱形,.【點睛】本題考查圓的綜合題,涉及切線的判定與性質、平行四邊形的性質、等邊三角形的判定與性質、相似三角形的判定與性質、扇形面積等知識,綜合性較強,有難度,掌握相關知識是解題關鍵.3、(1)見詳解;(2)【分析】(1)連接OD,由題意易得,則有△ODB是等邊三角形,然后可得△AEO也為等邊三角形,進而可得OD∥AC,最后問題可求證;(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圓O的半徑,進而可得扇形OED和△OED的面積,則有弓形ED的面積,最后問題可求解.【詳解】(1)證明:連接OD,如圖所示:∵四邊形BDEO是平行四邊形,∴,∴△ODB是等邊三角形,∴∠OBD=∠BOD=60°,∴∠AOE=∠OBD=60°,∵OE=OA,∴△AEO也為等邊三角形,∴∠EAO=∠DOB=60°,∴AE∥OD,∴∠ODC+∠C=180°,∵CD⊥AE,∴∠C=90°,∴∠ODC=90°,∵OD是圓O的半徑,∴CD是⊙O的切線.(2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,ED∥AB,∴∠EAO=∠CED=60°,∵∠AOE+∠EOD+∠BOD=180°,∴∠EOD=60°,∴△DEO為等邊三角形,∴ED=OE=AE,∵CD⊥AE,∠CED=60°,∴∠CDE=30°,∴,∵,∴,∴,設△OED的高為h,∴,∴,∴.【點睛】本題主要考查扇形面積公式、切線的判定定理及解直角三角形,熟練掌握扇形面積公式、切線的判定定理及解直角三角形是解題的關鍵.4、【分析】連接OB,由圓周角定理得出∠AOB=2∠ACB=120°,再由垂徑定理得出∠AOE=∠AOB=60°、AB=2AE,在Rt△AOE中,由OA=2OE求解可得答案.【詳解】如圖,連接OB,則∠AOB=2∠ACB=120°,∵OD⊥AB,∴∠AOE=∠AOB=60°,∵AO=6,∴在Rt△AOE中,,∴AB=2AE,故答案為:.【點睛】本題主要考查圓周角定理,解題的關鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。?、(1)見解析(2)見解析【分析】(1)由垂徑定理可得OD⊥BC、CD=DB、∠CDE=∠BDE,然后說明Rt△CDE≌Rt△BDE,最后運用全等三角形的性質即可證明;(2)由等腰三角形的性質可得∠ECB=∠EBC、∠OCB=∠OBC,再根據(jù)CE是切線得到∠OCE=90°,即∠OCB+∠BCE=90°,進而說明BE⊥AB即可證明.(1)證明:∵點D為弦BC中點∴OD⊥BC,CD=DB∴∠CDE=∠BDE在Rt△CDE和Rt△BDECD=BD,∠CDE=∠BDE,DE=DE∴Rt△CDE≌Rt△BDE∴EC=EB.(2)證明:∵EC=EB,OC=OB∴∠ECB=∠EBC,∠OCB=∠OBC,∵CE是切線∴∠OCE=90°,即∠OCB+∠BCE=90°∴∠OBC+∠EBC=90°,即BE⊥AB∴BE是的切線.【點睛】本題主要考查了垂徑定理、全等三角形的判定與性質、切線的證明、等腰三角形的性質等知識點,掌握垂徑定理是解答本題的關鍵.6、(1)①;②;(2);證明見解析;(3)或.【分析】(1)①,根據(jù)CE=BC,四邊形ABCD為正方形,可得BC=CD=CE,根據(jù)CF⊥DE,得出CF平分∠ECD即可;②,過點C作CG⊥BE于G,根據(jù)BC=EC,得出∠ECG=∠BCG=,根據(jù)∠ECH=∠HCD=,可得CG=HG,根據(jù)勾股定理在Rt△GHC中,,根據(jù)GE=,得出即可;(2),過點C作交BE于點M,得出,先證得出,可證是等腰直角三角形,可得即可;(3)或,根據(jù),分兩種情況,當∠ABE=90°-15°=75°時,BC=CE,先證△CDE為等邊三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根據(jù)CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根據(jù)勾股定理HE=,當∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根據(jù)30°直角三角形先證得出CF=,根據(jù)勾股定理EF=,再證FH=FE,得出EH=即可.【詳解】解:(1)①∵CE=BC,四邊形ABCD為正方形,∴BC=CD=CE,∵CF⊥DE,∴CF平分∠ECD,∴∠ECH=∠HCD,故答案為:∠ECH=∠HCD;②,過點C作CG⊥BE于G,∵BC=EC,∴∠ECG=∠BCG=,∵∠ECH=∠HCD=,∴∠GCH=∠ECG+∠ECF=+,∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,∴CG=HG,在Rt△GHC中,∴,∵GE=,∴GH=GE+EH=,∴,∴,∴,故答案是:;(2),證明:過點C作交BE于點M,則,∴?,∴,∵,,∴,,∴,∴,∴,,∴是等腰直角三角形,∴,∵,∴,(3)或,∵,分兩種情況,當∠ABE=90°-15°=75°時,∵BC=CE,∴∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,∴∠DCE=∠BCE-∠BCD=150°=90°=60°,∵CE=CD,∴△CDE為等邊三角形,∴DE=CD=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論