重難點解析滬科版9年級下冊期末試卷及完整答案詳解(必刷)_第1頁
重難點解析滬科版9年級下冊期末試卷及完整答案詳解(必刷)_第2頁
重難點解析滬科版9年級下冊期末試卷及完整答案詳解(必刷)_第3頁
重難點解析滬科版9年級下冊期末試卷及完整答案詳解(必刷)_第4頁
重難點解析滬科版9年級下冊期末試卷及完整答案詳解(必刷)_第5頁
已閱讀5頁,還剩28頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、已知⊙O的半徑為4,,則點A在()A.⊙O內(nèi) B.⊙O上 C.⊙O外 D.無法確定2、在平面直角坐標(biāo)系中,已知點與點關(guān)于原點對稱,則的值為()A.4 B.-4 C.-2 D.23、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.4、下列關(guān)于隨機(jī)事件的概率描述正確的是()A.拋擲一枚質(zhì)地均勻的硬幣出現(xiàn)“正面朝上”的概率為0.5,所以拋擲1000次就一定有500次“正面朝上”B.某種彩票的中獎率為5%,說明買100張彩票有5張會中獎C.隨機(jī)事件發(fā)生的概率大于或等于0,小于或等于1D.在相同條件下可以通過大量重復(fù)實驗,用一個隨機(jī)事件的頻率去估計概率5、下表記錄了一名球員在罰球線上投籃的結(jié)果:投籃次數(shù)50100150200250400500800投中次數(shù)286387122148242301480投中頻率0.5600.6300.5800.6100.5920.6050.6020.600根據(jù)頻率的穩(wěn)定性,估計這名球員投籃一次投中的概率約是()A.0.560 B.0.580 C.0.600 D.0.6206、如圖圖案中,不是中心對稱圖形的是()A. B. C. D.7、的邊經(jīng)過圓心,與圓相切于點,若,則的大小等于()A. B. C. D.8、如圖,在矩形ABCD中,點E在CD邊上,連接AE,將沿AE翻折,使點D落在BC邊的點F處,連接AF,在AF上取點O,以O(shè)為圓心,線段OF的長為半徑作⊙O,⊙O與AB,AE分別相切于點G,H,連接FG,GH.則下列結(jié)論錯誤的是()A. B.四邊形EFGH是菱形C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、數(shù)學(xué)興趣活動課上,小方將等腰的底邊BC與直線l重合,問:(1)如圖(1)已知,,點P在BC邊所在的直線l上移動,小方發(fā)現(xiàn)AP的最小值是______;(2)如圖(2)在直角中,,,,點D是CB邊上的動點,連接AD,將線段AD順時針旋轉(zhuǎn)60°,得到線段AP,連接CP,線段CP的最小值是______.2、如圖,在⊙O中,弦AB⊥OC于E點,C在圓上,AB=8,CE=2,則⊙O的半徑AO=___________.3、為了落實“雙減”政策,朝陽區(qū)一些學(xué)校在課后服務(wù)時段開設(shè)了與冬奧會項目冰壺有關(guān)的選修課.如圖,在冰壺比賽場地的一端畫有一些同心圓作為營壘,其中有兩個圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內(nèi)滑行的路徑MN的長度為______cm.4、圓錐的底面直徑是80cm,母線長90cm.它的側(cè)面展開圖的圓心角和圓錐的全面積依次是______.5、從,0,1,2這四個數(shù)中任取一個數(shù),作為關(guān)于x的方程中a的值,則該方程有實數(shù)根的概率為_________.6、如圖,半圓O中,直徑AB=30,弦CD∥AB,長為6π,則由與AC,AD圍成的陰影部分面積為_______.7、有四張完全相同的卡片,正面分別標(biāo)有數(shù)字,,,,將四張卡片背面朝上,任抽一張卡片,卡片上的數(shù)字記為,再從剩下卡片中抽一張,卡片上的數(shù)字記為,則二次函數(shù)的對稱軸在軸左側(cè)的概率是__________.三、解答題(7小題,每小題0分,共計0分)1、一張圓桌旁設(shè)有4個座位,丙先坐在了如圖所示的座位上,甲、乙、丁3人等可能地坐到①、②、③中的3個座位上.(1)甲坐在①號座位的概率是;(2)用畫樹狀圖或列表的方法,求甲與乙相鄰而坐的概率.2、如圖,是由一些大小相同的小正方體組合成的簡單幾同體,請在下面方格紙中分別畫出從它的左面和上面看到的形狀圖.3、如圖,在直角坐標(biāo)系中,將△ABC繞點A順時針旋轉(zhuǎn)90°.(1)畫出旋轉(zhuǎn)后的△AB1C1,并寫出B1、C1的坐標(biāo);(2)求線段AB在旋轉(zhuǎn)過程中掃過的面積.4、如圖,在⊙O中,弦AC與弦BD交于點P,AC=BD.(1)求證AP=BP;(2)連接AB,若AB=8,BP=5,DP=3,求⊙O的半徑.5、在正方形ABCD中,過點B作直線l,點E在直線l上,連接CE,DE,其中,過點C作于點F,交直線l于點H.(1)當(dāng)直線l在如圖①的位置時①請直接寫出與之間的數(shù)量關(guān)系______.②請直接寫出線段BH,EH,CH之間的數(shù)量關(guān)系______.(2)當(dāng)直線l在如圖②的位置時,請寫出線段BH,EH,CH之間的數(shù)量關(guān)系并證明;(3)已知,在直線l旋轉(zhuǎn)過程中當(dāng)時,請直接寫出EH的長.6、如圖,在中,,,將繞著點A順時針旋轉(zhuǎn)得到,連接BD,連接CE并延長交BD于點F.(1)求的度數(shù);(2)若,且,求DF的長.7、下面是“過圓外一點作圓的切線”的尺規(guī)作圖過程.已知:⊙O和⊙O外一點P.求作:過點P的⊙O的切線.作法:如圖,(1)連接OP;(2)分別以點O和點P為圓心,大于的長半徑作弧,兩弧相交于M,N兩點;(3)作直線MN,交OP于點C;(4)以點C為圓心,CO的長為半徑作圓,交⊙O于A,B兩點;(5)作直線PA,PB.直線PA,PB即為所求作⊙O的切線完成如下證明:證明:連接OA,OB,∵OP是⊙C直徑,點A在⊙C上∴∠OAP=90°(___________)(填推理的依據(jù)).∴OA⊥AP.又∵點A在⊙O上,∴直線PA是⊙O的切線(___________)(填推理的依據(jù)).同理可證直線PB是⊙O的切線.-參考答案-一、單選題1、C【分析】根據(jù)⊙O的半徑r=4,且點A到圓心O的距離d=5知d>r,據(jù)此可得答案.【詳解】解:∵⊙O的半徑r=4,且點A到圓心O的距離d=5,∴d>r,∴點A在⊙O外,故選:C.【點睛】本題主要考查點與圓的位置關(guān)系,點與圓的位置關(guān)系有3種.設(shè)⊙O的半徑為r,點P到圓心的距離OP=d,則有:①點P在圓外?d>r;②點P在圓上?d=r;③點P在圓內(nèi)?d<r.2、C【分析】根據(jù)關(guān)于原點對稱的點的坐標(biāo)特點:兩個點關(guān)于原點對稱時,它們的坐標(biāo)符號相反即可得到答案.【詳解】解:點與點關(guān)于原點對稱,,,.故選:C.【點睛】此題主要考查了原點對稱點的坐標(biāo)特點,解題的關(guān)鍵是掌握點的變化規(guī)律.3、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側(cè)有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關(guān)鍵.4、D【分析】根據(jù)隨機(jī)事件、必然事件以及不可能事件的定義即可作出判斷.【詳解】解:概率反映的是隨機(jī)性的規(guī)律,但每次試驗出現(xiàn)的結(jié)果具有不確定,故選項A、B錯誤;隨機(jī)事件發(fā)生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故選項C錯誤;在相同條件下可以通過大量重復(fù)實驗,用一個隨機(jī)事件的頻率去估計概率,故選項D正確;故選:D.【點睛】本題考查了隨機(jī)事件、必然事件以及不可能事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、C【分析】根據(jù)頻率估計概率的方法并結(jié)合表格數(shù)據(jù)即可解答.【詳解】解:∵由頻率分布表可知,隨著投籃次數(shù)越來越大時,頻率逐漸穩(wěn)定到常數(shù)0.600附近,∴這名球員在罰球線上投籃一次,投中的概率為0.600.故選:C.【點睛】本題主要考查了利用頻率估計概率,概率的得出是在大量實驗的基礎(chǔ)上得出的,不能單純的依靠幾次決定.6、C【分析】根據(jù)中心對稱圖形的概念:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心求解.【詳解】解:A、是中心對稱圖形,故A選項不合題意;B、是中心對稱圖形,故B選項不合題意;C、不是中心對稱圖形,故C選項符合題意;D、是中心對稱圖形,故D選項不合題意;故選:C.【點睛】本題考查了中心對稱圖形的知識,解題的關(guān)鍵是掌握中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180°后重合.7、A【分析】連接,根據(jù)圓周角定理求出,根據(jù)切線的性質(zhì)得到,根據(jù)直角三角形的性質(zhì)計算,得到答案.【詳解】解:連接,,,與圓相切于點,,,故選:A.【點睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.8、C【分析】由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根據(jù)切線長定理得到AG=AH,∠GAF=∠HAF,進(jìn)而求出∠GAF=∠HAF=∠DAE=30°,據(jù)此對A作出判斷;接下來延長EF與AB交于點N,得到EF是⊙O的切線,ANE是等邊三角形,證明四邊形EFGH是平行四邊形,再結(jié)合HE=EF可對B作出判斷;在RtEFC中,∠C=90°,∠FEC=60°,則EF=2CE,再結(jié)合AD=DE對C作出判斷;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不難判斷D.【詳解】解:由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切線,點G、H分別是切點,∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正確,不符合題意;延長EF與AB交于點N,如圖:∵OF⊥EF,OF是⊙O的半徑,∴EF是⊙O的切線,∴HE=EF,NF=NG,∴△ANE是等邊三角形,∴FG//HE,F(xiàn)G=HE,∠AEF=60°,∴四邊形EFGH是平行四邊形,∠FEC=60°,又∵HE=EF,∴四邊形EFGH是菱形,故B正確,不符合題意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正確,不符合題意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD=DE,∴AD=2CE,故C錯誤,符合題意.故選C.【點睛】本題是一道幾何綜合題,考查了切線長定理及推論,切線的判定,菱形的定義,含30的直角三角形的性質(zhì),等邊三角形的判定和性質(zhì),翻折變換等,正確理解翻折變換及添加輔助線是解決本題的關(guān)鍵.二、填空題1、105【分析】(1)如圖,作AH⊥BC于H.根據(jù)垂線段最短,求出AH即可解決問題.(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC時,KD的值最小,求出KD的最小值即可解決問題.【詳解】解:如圖作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根據(jù)垂線段最短可知,當(dāng)AP與AH重合時,PA的值最小,最小值為10.∴AP的最小值是10;(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC時,KD的值最小,∵,是等邊三角形,∴,∴PC的最小值為5.【點睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),垂線段最短,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題.2、5【分析】設(shè)⊙O的半徑為r,則OA=r,OD=r-2,先由垂徑定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【詳解】解:設(shè)⊙O的半徑為r,則OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半徑長為5,故答案為:5.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱斯垂啥ɡ恚?、【分析】如圖,設(shè)小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,根據(jù)切線的性質(zhì)定理和垂徑定理求解即可.【詳解】解:如圖,設(shè)小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內(nèi)滑行的路徑MN的長度為cm,故答案為:.【點睛】本題考查切線的性質(zhì)定理、垂徑定理、勾股定理,熟練掌握切線的性質(zhì)和垂徑定理是解答的關(guān)鍵.4、160°,5200【分析】由題意知,圓錐的展開圖扇形的r半徑為90cm,弧長l為.代入扇形弧長公式求解圓心角;代入扇形面積公式求出圓錐側(cè)面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開圖扇形的r半徑為90cm,弧長l為∵∴解得∵∴故答案為:160°,.【點睛】本題考查了扇形的圓心角與面積.解題的關(guān)鍵在于運用扇形的弧長與面積公式進(jìn)行求解.難點在于求出公式中的未知量.5、【分析】根據(jù)一元二次方程的定義,可得,根據(jù)一元二次方程的判別式的意義得到,可得,然后根據(jù)概率公式求解.【詳解】解:∵當(dāng)且,一元二次方程有實數(shù)根∴且從,0,1,2這四個數(shù)中任取一個數(shù),符合條件的結(jié)果有所得方程有實數(shù)根的概率為故答案為:【點睛】本題考查了列舉法求概率,一元二次方程的定義,一元二次方程根的判別式,掌握以上知識是解題的關(guān)鍵.6、45【分析】連接OC,OD,根據(jù)同底等高可知S△ACD=S△OCD,把陰影部分的面積轉(zhuǎn)化為扇形OCD的面積,利用扇形的面積公式S=來求解.【詳解】解:連接OC,OD,∵直徑AB=30,∴OC=OD=,∴CD∥AB,∴S△ACD=S△OCD,∵長為6π,∴陰影部分的面積為S陰影=S扇形OCD=,故答案為:45π.【點睛】本題主要考查了扇形的面積公式,正確理解陰影部分的面積=扇形COD的面積是解題的關(guān)鍵.7、【分析】根據(jù)二次函數(shù)的性質(zhì),對稱軸為,進(jìn)而可得同號,根據(jù)列表法即可求得二次函數(shù)的對稱軸在軸左側(cè)的概率【詳解】解:二次函數(shù)的對稱軸在軸左側(cè)對稱軸為,即同號,列表如下共有12種等可能結(jié)果,其中同號的結(jié)果有4種則二次函數(shù)的對稱軸在軸左側(cè)的概率為故答案為:【點睛】本題考查了二次函數(shù)圖象的性質(zhì),列表法求概率,掌握二次函數(shù)的圖象與系數(shù)的關(guān)系以及列表法求概率是解題的關(guān)鍵.三、解答題1、(1)(2)【分析】(1)根據(jù)概率公式直角計算即可;(2)畫樹狀圖可知共有6種等可能的結(jié)果,而甲與乙相鄰而坐的結(jié)果有4種,最后用概率公式求解即可.(1)解:∵丙坐了一張座位,∴甲坐在①號座位的概率是.故答案是.(2)解:根據(jù)題意畫樹狀圖如圖:共有6種等可能的結(jié)果,甲與乙兩同學(xué)恰好相鄰而坐的結(jié)果有4種,∴甲與乙相鄰而坐的概率為=.【點睛】本題主要考查了概率公式以及運用樹狀圖法求概率,正確畫出樹狀圖是解答本題的關(guān)鍵.2、圖見解析.【分析】根據(jù)左視圖和俯視圖的畫法即可得.【詳解】解:畫圖如下:【點睛】本題考查了左視圖和俯視圖,熟練掌握左視圖(是指從左面觀察物體所得到的圖形)和俯視圖(是指從上面觀察物體所得到的圖形)的畫法是解題關(guān)鍵.3、(1)作圖見解析,、;(2)【分析】(1)將繞點A順時針旋轉(zhuǎn)90°得,根據(jù)點A、B、C坐標(biāo),即可確定出點、的坐標(biāo);(2)根據(jù)勾股定理求出AB的長,由扇形面積公式即可得出答案.【詳解】(1)將繞點A順時針旋轉(zhuǎn)90°得如圖所示:∴、;(2)由圖可知:,∴線段AB在旋轉(zhuǎn)過程中掃過的面積為.【點睛】本題考查作旋轉(zhuǎn)圖形以及扇形的面積公式,掌握旋轉(zhuǎn)的性質(zhì)及扇形的面積公式是解題的關(guān)鍵.4、(1)證明見解析;(2).【分析】(1)連接,先證出,再根據(jù)圓周角定理可得,然后根據(jù)等腰三角形的判定即可得證;(2)連接,并延長交于點,連接,過作于點,先根據(jù)線段垂直平分線的判定與性質(zhì)可得,再根據(jù)線段的和差、勾股定理可得,然后根據(jù)直角三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,最后在中,利用勾股定理可得的長,從而可得的長,在中,利用勾股定理即可得.【詳解】證明:(1)如圖,連接,,,,即,,;(2)連接,并延長交于點,連接,過作于點,,,是的垂直平分線,,,,,在和中,,,,設(shè),則,在中,,即,解得,在中,,即的半徑為.【點睛】本題考查了圓周角定理、直角三角形全等的判定定理與性質(zhì)、勾股定理、垂徑定理等知識點,較難的是題(2),通過作輔助線,構(gòu)造全等三角形和直角三角形是解題關(guān)鍵.5、(1)①;②;(2);證明見解析;(3)或.【分析】(1)①,根據(jù)CE=BC,四邊形ABCD為正方形,可得BC=CD=CE,根據(jù)CF⊥DE,得出CF平分∠ECD即可;②,過點C作CG⊥BE于G,根據(jù)BC=EC,得出∠ECG=∠BCG=,根據(jù)∠ECH=∠HCD=,可得CG=HG,根據(jù)勾股定理在Rt△GHC中,,根據(jù)GE=,得出即可;(2),過點C作交BE于點M,得出,先證得出,可證是等腰直角三角形,可得即可;(3)或,根據(jù),分兩種情況,當(dāng)∠ABE=90°-15°=75°時,BC=CE,先證△CDE為等邊三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根據(jù)CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根據(jù)勾股定理HE=,當(dāng)∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根據(jù)30°直角三角形先證得出CF=,根據(jù)勾股定理EF=,再證FH=FE,得出EH=即可.【詳解】解:(1)①∵CE=BC,四邊形ABCD為正方形,∴BC=CD=CE,∵CF⊥DE,∴CF平分∠ECD,∴∠ECH=∠HCD,故答案為:∠ECH=∠HCD;②,過點C作CG⊥BE于G,∵BC=EC,∴∠ECG=∠BCG=,∵∠ECH=∠HCD=,∴∠GCH=∠ECG+∠ECF=+,∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,∴CG=HG,在Rt△GHC中,∴,∵GE=,∴GH=GE+EH=,∴,∴,∴,故答案是:;(2),證明:過點C作交BE于點M,則,∴?,∴,∵,,∴,,∴,∴,∴,,∴是等腰直角三角形,∴,∵,∴,(3)或,∵,分兩種情況,當(dāng)∠ABE=90°-15°=75°時,∵BC=CE,∴∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,∴∠DCE=∠BCE-∠BCD=150°=90°=60°,∵CE=CD,∴△CDE為等邊三角形,∴DE=CD=AB=2,∠DEC=60°,∴∠FEH=∠DEC=∠CEB=60°-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論