版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
中考數(shù)學(xué)總復(fù)習(xí)《圓》考試彩蛋押題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,已知在中,是直徑,,則下列結(jié)論不一定成立的是(
)A. B.C. D.到、的距離相等2、如圖,點(diǎn)A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(
)A.160o B.120o C.100o D.80o3、如圖,⊙O中,弦AB⊥CD,垂足為E,F(xiàn)為的中點(diǎn),連接AF、BF、AC,AF交CD于M,過F作FH⊥AC,垂足為G,以下結(jié)論:①;②HC=BF:③MF=FC:④,其中成立的個(gè)數(shù)是()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)4、如圖,、分別切于點(diǎn)、,點(diǎn)為優(yōu)弧上一點(diǎn),若,則的度數(shù)為(
)A. B. C. D.5、“圓材埋壁”是我國古代著名數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題,“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)在的數(shù)學(xué)語言表述是:如圖所示,CD為⊙O的直徑,弦AB⊥CD,垂足為E,CE為1寸,AB為10寸,求直徑CD的長.依題意,CD長為(
)A.寸 B.13寸 C.25寸 D.26寸第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,從一塊半徑為的圓形鐵皮上剪出一個(gè)圓周角為120°的扇形,如果將剪下來的扇形圍成一個(gè)圓錐,則該圓錐的底面圓的半徑為_________.2、如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.3、圓錐形冰淇淋的母線長是12cm,側(cè)面積是60πcm2,則底面圓的半徑長等于_____.4、如圖,正五邊形ABCDE內(nèi)接于⊙O,點(diǎn)F在上,則∠CFD=_____度.5、圓錐的底面半徑為3,側(cè)面積為,則這個(gè)圓錐的母線長為________.三、解答題(5小題,每小題10分,共計(jì)50分)1、已知:A、B、C、D是⊙O上的四個(gè)點(diǎn),且,求證:AC=BD.2、如圖,在Rt△ABC中,∠ACB=90°,∠BAC的平分線交BC于點(diǎn)O,OC=1,以點(diǎn)O為圓心OC為半徑作半圓.(1)求證:AB為⊙O的切線;(2)如果tan∠CAO=,求cosB的值.3、我們知道,與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,則三角形可以稱為圓的外切三角形.如圖1,與的三邊分別相切于點(diǎn)則叫做的外切三角形.以此類推,各邊都和圓相切的四邊形稱為圓外切四邊形.如圖2,與四邊形ABCD的邊AB,BC,CD,DA分別相切于點(diǎn)則四邊形叫做的外切四邊形.(1)如圖2,試探究圓外切四邊形的兩組對(duì)邊與之間的數(shù)量關(guān)系,猜想:(橫線上填“>”,“<”或“=”);(2)利用圖2證明你的猜想(寫出已知,求證,證明過程);(3)用文字?jǐn)⑹錾厦孀C明的結(jié)論:;(4)若圓外切四邊形的周長為相鄰的三條邊的比為,求此四邊形各邊的長.4、在中,,,D為的中點(diǎn),E,F(xiàn)分別為,上任意一點(diǎn),連接,將線段繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到線段,連接,.(1)如圖1,點(diǎn)E與點(diǎn)C重合,且的延長線過點(diǎn)B,若點(diǎn)P為的中點(diǎn),連接,求的長;(2)如圖2,的延長線交于點(diǎn)M,點(diǎn)N在上,且,求證:;(3)如圖3,F(xiàn)為線段上一動(dòng)點(diǎn),E為的中點(diǎn),連接,H為直線上一動(dòng)點(diǎn),連接,將沿翻折至所在平面內(nèi),得到,連接,直接寫出線段的長度的最小值.5、如圖,四邊形OABC中,.OA=OC,BA=BC.以O(shè)為圓心,以O(shè)A為半徑作☉O(1)求證:BC是☉O的切線:(2)連接BO并延長交⊙O于點(diǎn)D,延長AO交⊙O于點(diǎn)E,與此的延長線交于點(diǎn)F若.①補(bǔ)全圖形;②求證:OF=OB.-參考答案-一、單選題1、A【解析】【分析】根據(jù)圓心角、弧、弦之間的關(guān)系即可得出答案.【詳解】在中,弦弦,則其所對(duì)圓心角相等,即,所對(duì)優(yōu)弧和劣弧分別相等,所以有,故B項(xiàng)和C項(xiàng)結(jié)論正確,∵,AO=DO=BO=CO∴(SSS)可得出點(diǎn)到弦,的距離相等,故D項(xiàng)結(jié)論正確;而由題意不能推出,故A項(xiàng)結(jié)論錯(cuò)誤.故選:A【考點(diǎn)】此題主要考查圓的基本性質(zhì),解題的關(guān)鍵是熟知圓心角、弧、弦之間的關(guān)系.2、A【解析】【分析】在⊙O取點(diǎn),連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對(duì)的圓心角是它所對(duì)的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點(diǎn),連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點(diǎn)】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對(duì)的圓心角是它所對(duì)的圓周角的2倍,掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)弧,弦,圓心角之間的關(guān)系,圓周角定理以及三角形內(nèi)角和定理一一判斷即可.【詳解】解:∵F為的中點(diǎn),∴,故①正確,∴∠FCM=∠FAC,∵∠FCG=∠ACM+∠FCM,∠AME=∠FMC=∠ACM+∠FAC,∴∠AME=∠FMC=∠FCG>∠FCM,∴FC>FM,故③錯(cuò)誤,∵AB⊥CD,F(xiàn)H⊥AC,∴∠AEM=∠CGF=90°,∴∠CFH+∠FCG=90°,∠BAF+∠AME=90°,∴∠CFH=∠BAF,∴,∴HC=BF,故②正確,∵∠AGF=90°,∴∠CAF+∠AFH=90°,∴=180°,∴=180°,∴,故④正確,故選:C.【點(diǎn)評(píng)】本題考查圓心角,弧,弦之間的關(guān)系,三角形內(nèi)角和定理等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考選擇題中的壓軸題.4、C【解析】【分析】要求∠ACB的度數(shù),只需根據(jù)圓周角定理構(gòu)造它所對(duì)的弧所對(duì)的圓心角,即連接OA,OB;再根據(jù)切線的性質(zhì)以及四邊形的內(nèi)角和定理即可求解.【詳解】解:連接OA,OB,∵PA、PB分別切⊙O于點(diǎn)A、B,∴OA⊥AP,OB⊥BP,∴∠PAO=∠PBO=90°,∴∠AOB+∠APB=180°,∵∠AOB=2∠ACB,∠ACB=∠APB,∴3∠ACB=180°,∴∠ACB=60°,故選:C.【考點(diǎn)】此題考查了切線的性質(zhì),圓周角定理,以及四邊形的內(nèi)角和,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.5、D【解析】【分析】連結(jié)AO,根據(jù)垂徑定理可得:,然后設(shè)⊙O半徑為R,則OE=R-1.再由勾股定理,即可求解.【詳解】解:連結(jié)AO,∵CD為直徑,CD⊥AB,∴.設(shè)⊙O半徑為R,則OE=R-1.Rt△AOE中,OA2=AE2+OE2,∴R2=52+(R-1)2,∴
R=13,∴
CD=2R=26(寸).故選:D【考點(diǎn)】本題主要考查了垂徑定理,勾股定理,熟練掌握垂徑定理是解題的關(guān)鍵.二、填空題1、【解析】【分析】連接OA,OB,證明△AOB是等邊三角形,繼而求得AB的長,然后利用弧長公式可以計(jì)算出的長度,再根據(jù)扇形圍成圓錐底面圓的周長等于扇形的弧長即可作答.【詳解】連接OA,OB,則∠BAO=∠BAC==60°,又∵OA=OB,∴△AOB是等邊三角形,∴AB=OA=1,∵∠BAC=120°,∴的長為:,設(shè)圓錐底面圓的半徑為r故答案為.【考點(diǎn)】本題主要考查了弧長公式以及扇形弧長與底面圓周長相等的知識(shí)點(diǎn),借助等量關(guān)系即可算出底面圓的半徑.2、6【解析】【分析】作直徑CD,如圖,連接BD,根據(jù)圓周角定理得到∠CBD=90°,∠D=60°,然后利用含30度的直角三角形三邊的關(guān)系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×6=6,∴CD=2BD=12,∴OC=6,即⊙O的半徑是6.故答案為6.【考點(diǎn)】本題主要考查圓周角的性質(zhì),解決本題的關(guān)鍵是要熟練掌握?qǐng)A周角的性質(zhì).3、5cm.【解析】【分析】設(shè)圓錐的底面圓的半徑長為rcm,根據(jù)圓錐的側(cè)面積公式計(jì)算即可.【詳解】解:設(shè)圓錐的底面圓的半徑長為rcm.則×2π?r×12=60π,解得:r=5(cm),故答案為5cm.【考點(diǎn)】圓錐的側(cè)面積公式是本題的考點(diǎn),牢記其公式是解題的關(guān)鍵.4、36.【解析】【分析】連接OC,OD.求出∠COD的度數(shù),再根據(jù)圓周角定理即可解決問題.【詳解】如圖,連接OC,OD.∵五邊形ABCDE是正五邊形,∴∠COD==72°,∴∠CFD=∠COD=36°,故答案為:36.【考點(diǎn)】本題考查了正多邊形和圓、圓周角定理等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí).5、4【解析】【分析】根據(jù)圓錐的底面半徑可以求出底面周長即為展開后的弧長,側(cè)面積即為展開后扇形的面積,再根據(jù)扇形的面積公式求出扇形的半徑即為圓錐的母線.【詳解】∵底面半徑為3,∴底面周長=2×3π=6π.∴圓錐的母線=.故答案為:4.【考點(diǎn)】本題考查圓錐與扇形的結(jié)合,關(guān)鍵在于理解圓錐周長是扇形弧長,圓錐母線是扇形半徑.三、解答題1、詳見解析【解析】【分析】先根據(jù)可得,再根據(jù)同圓中等弧所對(duì)的弦相等即得.【詳解】證明:∵∴∴【考點(diǎn)】本題考查圓心角定理推論,解題關(guān)鍵是熟知同圓或等圓中,等弧所對(duì)的弦相等.2、(1)證明見解析(2)【解析】【詳解】(1)證明:作OM⊥AB于M,∵OA平分∠CAB,OC⊥AC,OM⊥AB,∴OC=OM.∴AB是⊙O的切線.(2)設(shè)BM=x,OB=y(tǒng),則y2-x2=1.①∵tan∠CAO=,∴AC=AM=3.∵cosB=,∴.∴x2+3x=y(tǒng)2+y.②由①②可得y=3x-1,∴(3x-1)2-x2=1.∴x=,y=.∴cosB==.3、(1)=;(2)答案見解析;(3)圓外切四邊形的對(duì)邊之和相等;(4)4;10;12;6【解析】【分析】(1)根據(jù)圓外切四邊形的定義猜想得出結(jié)論;(2)根據(jù)切線長定理即可得出結(jié)論;(3)由(2)可得出答案;(4)根據(jù)圓外切四邊形的性質(zhì)求出第四邊,利用周長建立方程求解即可得出結(jié)論.【詳解】(1)∵⊙O與四邊形ABCD的邊AB,BC,CD,DA分別相切于點(diǎn)E,F(xiàn),G,H,∴猜想AB+CD=AD+BC,故答案為:=.(2)已知:四邊形ABCD的四邊AB,BC,CD,DA都于⊙O相切于G,F(xiàn),E,H,求證:AD+BC=AB+CD,證明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圓外切四邊形的對(duì)邊和相等.(3)由(2)可知:圓外切四邊形的對(duì)邊和相等.故答案為:圓外切四邊形的對(duì)邊和相等;(4)∵相鄰的三條邊的比為2:5:6,∴設(shè)此三邊為2x,5x,6x,根據(jù)圓外切四邊形的性質(zhì)得,第四邊為2x+6x?5x=3x,∵圓外切四邊形的周長為32,∴2x+5x+6x+3x=16x=32,∴x=2,∴此四邊形的四邊的長為2x=4,5x=10,6x=12,3x=6.即此四邊形各邊的長為:4,10,12,6.【考點(diǎn)】此題是圓的綜合題,主要考查了新定義圓的外切四邊形的性質(zhì),四邊形的周長,切線長定理,理解和掌握?qǐng)A外切四邊形的定義是解本題的關(guān)鍵.4、(1)2(2)見解析(3)【解析】【分析】(1)根據(jù)已知條件可得為的中點(diǎn),證明,進(jìn)而根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解;(2)過點(diǎn)作交的延長線于點(diǎn),證明,,可得,進(jìn)而根據(jù),即可得出結(jié)論,(3)根據(jù)(2)可知,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),點(diǎn)在平行于的線段上運(yùn)動(dòng),根據(jù)題意作出圖形,根據(jù)點(diǎn)到圓上的距離求最值即可求解.(1)如圖,連接將線段繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到線段,是等腰直角三角形,P為FG的中點(diǎn),,,,,D為的中點(diǎn),,,,,在中,;(2)如圖,過點(diǎn)作交的延長線于點(diǎn),,,,,是等腰直角三角形,,,在與中,
,,,,又,,
,,,,,
又,,,,,,,;(3)由(2)可知,則當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),點(diǎn)在平行于的線段上運(yùn)動(dòng),將沿翻折至所在平面內(nèi),得到,E為的中點(diǎn),,,則點(diǎn)在以為圓心為半徑的圓上運(yùn)動(dòng),當(dāng)三點(diǎn)共線時(shí),最小,如圖,當(dāng)運(yùn)動(dòng)到與點(diǎn)重合時(shí),取得最小值,.如圖,當(dāng)點(diǎn)運(yùn)動(dòng)到與點(diǎn)重合時(shí),取得最小值,此時(shí),則.綜上所述,的最小值為.【考點(diǎn)】本題考查了等腰三角形的性質(zhì)與判定,直角三角形斜邊上的中線,勾股定理,全等三角形的性質(zhì)與判定,軸對(duì)稱線的性質(zhì),點(diǎn)到圓上一點(diǎn)距離最值問題,正確的添加輔助線是解題的關(guān)鍵.5、(1)證明見解析(2)①圖見解析(2)證明見解析【解析】【分析】(1)連接AC,根據(jù)等腰三角形的性質(zhì)得到∠OAC=∠OCA,∠BAC=∠BCA,得到∠OCB=∠OAB=90°,根據(jù)切線的判定定理證明;(2)①根據(jù)題意畫出圖形;②根據(jù)切線長定理得到BA=BC,得到BD是AC的垂直平分線,根據(jù)垂徑定理、圓心角和弧的關(guān)系定理得到∠AOC=120°,根據(jù)等腰三角形的判定定理證明結(jié)論.【詳解】(1)證明:如圖1,連接AC,∵OA=O
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年紅外光學(xué)測量雷達(dá)項(xiàng)目建議書
- 2025年文化內(nèi)容產(chǎn)品服務(wù)項(xiàng)目發(fā)展計(jì)劃
- 中藥封包護(hù)理的康復(fù)效果研究
- 護(hù)理急救:原則與流程
- 運(yùn)動(dòng)平板試驗(yàn)護(hù)理要點(diǎn)總結(jié)
- 管道護(hù)理PDCA循環(huán)詳解
- 危重癥監(jiān)護(hù)核心護(hù)理技術(shù)梳理
- 護(hù)理入門課程課件
- 告別任性課件
- 護(hù)理常規(guī)康復(fù)護(hù)理
- 物流運(yùn)輸服務(wù)方案投標(biāo)文件(技術(shù)方案)
- 南陽市勞務(wù)合同范本
- 產(chǎn)業(yè)園招商培訓(xùn)
- 2026年齊齊哈爾高等師范??茖W(xué)校單招綜合素質(zhì)考試題庫必考題
- 2018版公路工程質(zhì)量檢驗(yàn)評(píng)定標(biāo)準(zhǔn)分項(xiàng)工程質(zhì)量檢驗(yàn)評(píng)定表路基土石方工程
- 導(dǎo)尿管相關(guān)尿路感染(CAUTI)防控最佳護(hù)理實(shí)踐專家共識(shí)解讀
- 2025年廣東深圳高中中考自主招生數(shù)學(xué)試卷試題(含答案詳解)
- SMETA員工公平職業(yè)發(fā)展管理程序-SEDEX驗(yàn)廠專用文件(可編輯)
- 2024年湖南高速鐵路職業(yè)技術(shù)學(xué)院公開招聘輔導(dǎo)員筆試題含答案
- 水泵購買合同(標(biāo)準(zhǔn)版)
- ICU獲得性衰弱課件
評(píng)論
0/150
提交評(píng)論