中考數(shù)學總復習《 圓》考前沖刺練習試題附答案詳解(鞏固)_第1頁
中考數(shù)學總復習《 圓》考前沖刺練習試題附答案詳解(鞏固)_第2頁
中考數(shù)學總復習《 圓》考前沖刺練習試題附答案詳解(鞏固)_第3頁
中考數(shù)學總復習《 圓》考前沖刺練習試題附答案詳解(鞏固)_第4頁
中考數(shù)學總復習《 圓》考前沖刺練習試題附答案詳解(鞏固)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

中考數(shù)學總復習《圓》考前沖刺練習試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、已知圓的半徑為扇形的圓心角為,則扇形的面積為(

)A. B. C. D.2、如圖,PA,PB是⊙O的切線,A,B是切點,點C為⊙O上一點,若∠ACB=70°,則∠P的度數(shù)為(

)A.70° B.50° C.20° D.40°3、已知:如圖,AB是⊙O的直徑,點P在BA的延長線上,弦CD交AB于E,連接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,過E作弦GF⊥BC交圓與G、F兩點,連接CF、BG.則下列結論:①CD⊥AB;②PC是⊙O的切線;③OD∥GF;④弦CF的弦心距等于BG.則其中正確的是()A.①②④ B.③④ C.①②③ D.①②③④4、如圖,在△ABC中,AG平分∠CAB,使用尺規(guī)作射線CD,與AG交于點E,下列判斷正確的是(

A.AG平分CDB.C.點E是△ABC的內心D.點E到點A,B,C的距離相等5、下列4個說法中:①直徑是弦;②弦是直徑;③任何一條直徑所在的直線都是圓的對稱軸;④弧是半圓;正確的有(

)A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,是的外接圓的直徑,若,則______.2、如圖,拋物線的圖象與坐標軸交于點、、,頂點為,以為直徑畫半圓交軸的正半軸于點,圓心為,是半圓上的一動點,連接,是的中點,當沿半圓從點運動至點時,點運動的路徑長是__________.3、一個圓錐的底面半徑r=6,高h=8,則這個圓錐的側面積是_____.4、已知直線m與半徑為5cm的⊙O相切于點P,AB是⊙O的一條弦,且,若AB=6cm,則直線m與弦AB之間的距離為_____.5、如圖,圓錐的母線長OA=6,底面圓的半徑為,一只小蟲在圓線底面的點A處繞圓錐側面一周又回到點A處,則小蟲所走的最短路程為___________(結果保留根號)三、解答題(5小題,每小題10分,共計50分)1、【問題提出】如何用圓規(guī)和無刻度的直尺作一條直線或圓弧平分已知扇形的面積?【初步嘗試】如圖1,已知扇形,請你用圓規(guī)和無刻度的直尺過圓心作一條直線,使扇形的面積被這條直線平分;【問題聯(lián)想】如圖2,已知線段,請你用圓規(guī)和無刻度的直尺作一個以為斜邊的等腰直角三角形;【問題再解】如圖3,已知扇形,請你用圓規(guī)和無刻度的直尺作一條以點為圓心的圓弧,使扇形的面積被這條圓弧平分.(友情提醒:以上作圖均不寫作法,但需保留作圖痕跡)2、已知P為⊙O上一點,過點P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有點A、B(不與P、Q重合),連接AP、BP,若∠APQ=∠BPQ(1)如圖1,當∠APQ=45°,AP=1,BP=2時,求⊙O的半徑。(2)如圖2,連接AB,交PQ于點M,點N在線段PM上(不與P、M重合),連接ON、OP,設∠NOP=α,∠OPN=β,若AB平行于ON,探究α與β的數(shù)量關系。3、如圖,在中,,以為直徑的⊙O與相交于點,過點作⊙O的切線交于點.(1)求證:;(2)若⊙O的半徑為,,求的長.4、如圖,四邊形內接于,對角線,垂足為,于點,直線與直線于點.(1)若點在內,如圖1,求證:和關于直線對稱;(2)連接,若,且與相切,如圖2,求的度數(shù).5、如圖,內接于,,,則的直徑等于多少?-參考答案-一、單選題1、B【解析】【分析】扇形面積公式為:利用公式直接計算即可得到答案.【詳解】解:圓的半徑為扇形的圓心角為,故選:【考點】本題考查的是扇形的面積的計算,掌握扇形的面積的計算公式是解題的關鍵.2、D【解析】【分析】首先連接OA,OB,由PA,PB為⊙O的切線,根據(jù)切線的性質,即可得∠OAP=∠OBP=90°,又由圓周角定理,可求得∠AOB的度數(shù),繼而可求得答案.【詳解】解:連接OA,OB,∵PA,PB為⊙O的切線,∴∠OAP=∠OBP=90°,∵∠ACB=70°,∴∠AOB=2∠P=140°,∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故選:D.【考點】此題考查了切線的性質與圓周角定理,注意掌握輔助線的作法和數(shù)形結合思想的應用.3、A【解析】【分析】連接BD、OC、AG、AC,過O作OQ⊥CF于Q,OZ⊥BG于Z,求出∠ABC=∠ABD,從而有弧AC=弧AD,由垂徑定理的推論即可判斷①的正誤;由CD⊥PB可得到∠P+∠PCD=90°,結合∠P=∠DCO、等邊對等角的知識等量代換可得到∠PCO=90°,據(jù)此可判斷②的正誤;假設OD∥GF成立,則可得到∠ABC=30°,判斷由已知條件能否得到∠ABC的度數(shù)即可判斷③的正誤;求出CF=AG,根據(jù)垂徑定理和三角形中位線的知識可得到CQ=OZ,通過證明△OCQ≌△BOZ可得到OQ=BZ,結合垂徑定理即可判斷④.【詳解】連接BD、OC、AG,過O作OQ⊥CF于Q,OZ⊥BG于Z,∵OD=OB,∴∠ABD=∠ODB,∵∠AOD=∠OBD+∠ODB=2∠OBD,∵∠AOD=2∠ABC,∴∠ABC=∠ABD,∴弧AC=弧AD,∵AB是直徑,∴CD⊥AB,∴①正確;∵CD⊥AB,∴∠P+∠PCD=90°,∵OD=OC,∴∠OCD=∠ODC=∠P,∴∠PCD+∠OCD=90°,∴∠PCO=90°,∴PC是切線,∴②正確;假設OD∥GF,則∠AOD=∠FEB=2∠ABC,∴3∠ABC=90°,∴∠ABC=30°,已知沒有給出∠B=30°,∴③錯誤;∵AB是直徑,∴∠ACB=90°,∵EF⊥BC,∴AC∥EF,∴弧CF=弧AG,∴AG=CF,∵OQ⊥CF,OZ⊥BG,∴CQ=AG,OZ=AG,BZ=BG,∴OZ=CQ,∵OC=OB,∠OQC=∠OZB=90°,∴△OCQ≌△BOZ,∴OQ=BZ=BG,∴④正確.故選A.【考點】本題是圓的綜合題,考查了垂徑定理及其推論,切線的判定,等腰三角形的性質,平行線的性質,全等三角形的判定與性質.解答本題的關鍵是熟練掌握圓的有關知識點.4、C【解析】【分析】根據(jù)作法可得CD平分∠ACB,結合題意即可求解.【詳解】解:由作法得CD平分∠ACB,

∵AG平分∠CAB,∴E點為△ABC的內心故答案為:C.【考點】此題考查了尺規(guī)作圖(角平分線),以及三角形角平分線的性質,熟練掌握相關基本性質是解題的關鍵.5、B【解析】【分析】根據(jù)弧的分類、圓的性質逐一判斷即可.【詳解】解:①直徑是最長的弦,故正確;②最長的弦才是直徑,故錯誤;③過圓心的任一直線都是圓的對稱軸,故正確;④半圓是弧,但弧不一定是半圓,故錯誤,正確的有兩個,故選B.【考點】本題考查了對圓的認識,熟知弦的定義、弧的分類是本題的關鍵.二、填空題1、【解析】【分析】連接BD,如圖,根據(jù)圓周角定理得到∠ABD=90°,則利用互余計算出∠D=50°,然后再利用圓周角定理得到∠ACB的度數(shù).【詳解】連接BD,如圖,∵AD為△ABC的外接圓⊙O的直徑,∴∠ABD=90°,∴∠D=90°-∠BAD=90°-40°=50°,∴∠ACB=∠D=50°.故答案為:50.【考點】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.2、【解析】【分析】先求出A、B、E的坐標,然后求出半圓的直徑為4,由于E為定點,P是半圓AB上的動點,N為EP的中點,所以N的運動路經(jīng)為直徑為2的半圓,計算即可.【詳解】解:,∴點E的坐標為(1,-2),令y=0,則,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E為定點,P是半圓AB上的動點,N為EP的中點,所以N的運動路經(jīng)為直徑為2的半圓,如圖,∴點運動的路徑長是.【考點】本題屬于二次函數(shù)和圓的綜合問題,考查了運動路徑的問題,熟練掌握二次函數(shù)和圓的基礎是解題的關鍵.3、60π【解析】【分析】利用圓錐的側面積公式:,求出圓錐的母線即可解決問題.【詳解】解:圓錐的母線,∴圓錐的側面積=π×10×6=60π,故答案為:60π.【考點】本題考查了圓錐的側面積,勾股定理等知識,解題的關鍵是記住圓錐的側面積公式.4、1cm或9cm【解析】【分析】根據(jù)題意:分兩種情況進行分析,①當AB與直線位于圓心O的同側時,連接OA,OP交AB于點E;②當AB與直線m位于圓心O的異側時,連接OA’,OP交于點F;結合圖形利用圓的基本性質及勾股定理進行求解即可得出結果.【詳解】解:根據(jù)題意:分兩種情況進行分析,①如圖所示,當AB與直線位于圓心O的同側時,連接OA,OP交AB于點E,∵,,∴,,∵直線m為圓O的切線,∴,在中,,∴,②如圖所示,當AB與直線m位于圓心O的異側時,連接OA’,OP交于點F,結合圖形及①可得,∴PF=PO+OF=5+4=9cm,故答案為:或.【考點】題目主要考查圓的基本性質及勾股定理解直角三角形,理解題意,作出相應圖形進行求解是解題關鍵.5、6【解析】【分析】利用圓錐的底面周長等于側面展開圖的弧長可得圓錐側面展開圖的圓心角,求出側面展開圖中兩點間的距離即為最短距離.【詳解】∵底面圓的半徑為,∴圓錐的底面周長為2×=3,設圓錐的側面展開圖的圓心角為n.∴,解得n=90°,如圖,AA′的長就是小蟲所走的最短路程,∵∠O=90°,OA′=OA=6,∴AA′=.故答案為:6.【考點】本題考查了圓錐的計算,考查圓錐側面展開圖中兩點間距離的求法;把立體幾何轉化為平面幾何來求是解決本題的突破點.三、解答題1、見解析【解析】【分析】【初步嘗試】如圖1,作∠AOB的角平分線所在直線即為所求;【問題聯(lián)想】如圖2,先作MN的線段垂直平分線交MN于點O,再以O為圓心MO為半徑作圓,與垂直平分線的交點即為等腰直角三角形的頂點;【問題再解】如圖3先作OB的線段垂直平分線交OB于點N,再以N為圓心NO為半徑作圓,與垂直平分線的交點為M,然后以O為圓心,OM為半徑作圓與扇形所交的圓弧即為所求.【詳解】【初步嘗試】如圖所示,作∠AOB的角平分線所在直線OP即為所求;【問題聯(lián)想】如圖,先作MN的線段垂直平分線交MN于點O,再以O為圓心MO為半徑作圓,與垂直平分線的交點即為等腰直角三角形的頂點;【問題再解】如圖,先作OB的線段垂直平分線交OB于點N,再以N為圓心NO為半徑作圓,與垂直平分線的交點為M,然后以O為圓心,OM為半徑作圓與扇形所交的圓弧CD即為所求.【考點】本題考查了尺規(guī)作圖,角平分線的性質,線段垂直平分線的性質,扇形的面積等知識,解決此類題目的關鍵是熟悉基本幾何圖形的性質,掌握基本作圖方法.2、(1);(2)α+2β=90°,見解析【解析】【分析】(1)連接AB,由已知得到∠APB=∠APQ+BPQ=90°,根據(jù)圓周角定理證得AB是⊙O的直徑,然后根據(jù)勾股定理求得直徑,即可求得半徑;(2)連接OA、OB、OQ,由證得∠APQ=∠BPQ,即可證得OQ⊥ON,然后根據(jù)三角形內角和定理證得2∠OPN+∠PON+∠NOQ=180°,,即可證得α+2β=90°.【詳解】(1)連接AB,∵∠APQ=∠BPQ=45°,∴∠APB=∠APQ+BPQ=90°,∴AB是⊙O的直徑,∴AB=,∴⊙O的半徑為;(2)α+2β=90°,證明:連接OA、OB、OQ,∵∠APQ=∠BPQ,∴,∴∠AOQ=∠BOQ,∵OA=OB,∴OQ⊥AB,∵ON∥AB,∴NO⊥OQ,∴∠NOQ=90°,∵OP=OQ,∴∠OPN=∠OQP,∵∠OPN+∠OQP+∠PON+∠NOQ=180°,∴2∠OPN+∠PON+∠NOQ=180°,∴∠NOP+2∠OPN=90°,∵∠NOP=α,∠OPN=β,∴α+2β=90°.【解答】解:【點評】本題考查了圓周角定理,垂徑定理,熟練掌握性質定理是解題的關鍵.3、(1)見詳解;(2)4.8.【解析】【分析】(1)連接OD,由AB=AC,OB=OD,則∠B=∠ODB=∠C,則OD∥AC,由DE為切線,即可得到結論成立;(2)連接AD,則有AD⊥BC,得到BD=CD=8,求出AD=6,利用三角形的面積公式,即可求出DE的長度.【詳解】解:連接OD,如圖:∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠B=∠ODB=∠C,∴OD∥AC,∵DE是切線,∴OD⊥DE,∴AC⊥DE;(2)連接AD,如(1)圖,∵AB為直徑,AB=AC,∴AD是等腰三角形ABC的高,也是中線,∴CD=BD=,∠ADC=90°,∵AB=AC=,由勾股定理,得:,∵,∴;【考點】本題主要考查的是切線的性質、等腰三角形的性質、平行線的性質、勾股定理,解題的關鍵是熟練掌握所學的性質定理,正確的求出邊的長度.4、(1)見解析;(2)【解析】【分析】(1)根據(jù)垂直及同弧所對圓周角相等性質,可得,可證與全等,得到,進一步即可證點和關于直線成軸對稱;(2)作出相應輔助線如解析圖,可得與全等,利用全等三角形的性質及切線的性質,可得,根據(jù)平行線的性質及三角形內角和即可得出答案.【詳解】解:(1)證明:∵,,∴,∵,∴,又∵同弧所對圓周角相等,∴,∴,在與中,∴,∴,又,∴點和關于直線成軸對稱;(2)如圖,延長交于點,連接,,,,∵,,∴、、、四點共圓,、、、四點共圓,∴,,在與中,,∴,∴,∴為等腰直角三角形,∴,∴,又,∴,∵與相切,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論