版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣東省臺(tái)山市中考數(shù)學(xué)真題分類(平行線的證明)匯編定向練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,將?ABCD沿對角線AC折疊,使點(diǎn)B落在B′處,若∠1=∠2=44°,則∠B為()A.66° B.104° C.114° D.124°2、如圖,點(diǎn)是中邊上的一點(diǎn),過作,垂足為.若,則是(
)A.直角三角形 B.銳角三角形 C.鈍角三角形 D.無法確定3、如圖,∠ABD、∠ACD的角平分線交于點(diǎn)P,若∠A=50°,∠D=10°,則∠P的度數(shù)為(
)A.15° B.20° C.25° D.30°4、如圖,在△ABC中,∠C=90°,點(diǎn)D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°5、如圖,將△ABC紙片沿DE折疊,點(diǎn)A的對應(yīng)點(diǎn)為A’,若∠B=60°,∠C=80°,則∠1+∠2等于(
)A.40° B.60° C.80° D.140°6、如圖,將一副直角三角板按如圖所示疊放,其中,,,則的大小是(
)A. B. C. D.7、如圖,平面上直線a、b分別經(jīng)過線段OK的兩個(gè)端點(diǎn),則直線a、b相交所成的銳角的度數(shù)是(
)A.20° B.30°C.70° D.80°8、如圖,在中,,,,,連接BC,CD,則的度數(shù)是()A.45° B.50° C.55° D.80°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,,的平分線相交于點(diǎn),的平分線相交于點(diǎn),,的平分線相交于點(diǎn)……以此類推,則的度數(shù)是___________(用含與的代數(shù)式表示).2、如圖,DE⊥AB,∠A=25°,∠D=45°,則∠ACB的度數(shù)為_____3、如圖,已知l1∥l2,直線l分別與l1,l2相交于點(diǎn)C,D,把一塊含30°角的三角尺按如圖位置擺放,若∠1=130°,則∠2=___.4、如圖,將分別含有、角的一副三角板重疊,使直角頂點(diǎn)重合,若兩直角重疊形成的角為,則圖中角的度數(shù)為_______.5、已知△ABC,∠A=80°,BF平分外角∠CBD,CF平分外角∠BCE,BG平分∠CBF,CG平分外角∠BCF,則∠G=______°.6、如圖,一束光沿方向,先后經(jīng)過平面鏡、反射后,沿方向射出,已知,,則_________.7、請把以下說理過程補(bǔ)充完整:如圖,AB∥CD,∠C=∠D,如果∠1=∠2,那么∠E與∠C互為補(bǔ)角嗎?說說你的理由.解:因?yàn)椤?=∠2,根據(jù)___________,所以EF∥________.又因?yàn)锳B∥CD,根據(jù)___________,所以EF∥________.根據(jù)____________,所以∠E+________=_________°.又因?yàn)椤螩=∠D,所以∠E+________=_________°,所以∠E與∠C互為補(bǔ)角.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.(1)CD與EF平行嗎?為什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).2、如圖,在△ABC中,∠ABC的平分線BD交∠ACB的平分線CE于點(diǎn)O.(1)求證:.(2)如圖1,若∠A=60°,請直接寫出BE,CD,BC的數(shù)量關(guān)系.(3)如圖2,∠A=90°,F(xiàn)是ED的中點(diǎn),連接FO.①求證:BC?BE?CD=2OF.②延長FO交BC于點(diǎn)G,若OF=2,△DEO的面積為10,直接寫出OG的長.3、如圖,在△中,,分別是邊,上的點(diǎn),若△≌△≌△,求的度數(shù).4、(1)如圖(a),BD平分,CD平分.試確定和的數(shù)量關(guān)系.(2)如圖(b),BE平分,CE平分外角.試確定和的數(shù)量關(guān)系.(3)如圖(c),BF平分外角,CF平分外角.試確定和的數(shù)量關(guān)系.5、如圖,在△ABC中,D是BC邊上的一點(diǎn),AB=DB,BE平分∠ABC,交AC邊于點(diǎn)E,連接DE.(1)求證:△ABE≌△DBE,(2)若∠A=100°,∠C=50°,求∠AEB的度數(shù).6、如圖,△ABC中,E是AB上一點(diǎn),過D作DEBC交AB于E點(diǎn),F(xiàn)是BC上一點(diǎn),連接DF.若∠AED=∠1.(1)求證:ABDF.(2)若∠1=52°,DF平分∠CDE,求∠C的度數(shù).7、如圖,點(diǎn)A在MN上,點(diǎn)B在PQ上,連接AB,過點(diǎn)A作交PQ于點(diǎn)C,過點(diǎn)B作BD平分∠ABC交AC于點(diǎn)D,且.(1)求證:;(2)若,求∠ADB的度數(shù).-參考答案-一、單選題1、C【解析】【分析】根據(jù)平行四邊形性質(zhì)和折疊性質(zhì)得∠BAC=∠ACD=∠B′AC=∠1,再根據(jù)三角形內(nèi)角和定理可得.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠ACD=∠BAC,由折疊的性質(zhì)得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°,故選C.【考點(diǎn)】本題考查了平行四邊形的性質(zhì)、折疊的性質(zhì)、三角形的外角性質(zhì)以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質(zhì),求出∠BAC的度數(shù)是解決問題的關(guān)鍵.2、A【解析】【分析】先求解再證明可得從而可得結(jié)論.【詳解】解:是直角三角形.故選A【考點(diǎn)】本題考查的是垂直的定義,三角形的內(nèi)角和定理的應(yīng)用,掌握“三角形的內(nèi)角和定理”是解本題的關(guān)鍵.3、B【解析】【分析】利用三角形外角的性質(zhì),得到∠ACD與∠ABD的關(guān)系,然后用角平分線的性質(zhì)得到角相等的關(guān)系,代入計(jì)算即可得到答案.【詳解】解:延長DC,與AB交于點(diǎn)E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.設(shè)AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°-(∠ACD-∠ABD)=20°.故選B.【考點(diǎn)】本題綜合考查角平分線的性質(zhì)、三角形外角的性質(zhì)、三角形內(nèi)角和等知識(shí)點(diǎn).解題的關(guān)鍵是熟練的運(yùn)用所學(xué)性質(zhì)去求解.4、D【解析】【分析】根據(jù)鄰補(bǔ)角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點(diǎn)】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)平角定義和折疊的性質(zhì),得,再利用三角形的內(nèi)角和定理進(jìn)行轉(zhuǎn)換,得從而解題.【詳解】解:根據(jù)平角的定義和折疊的性質(zhì),得.又,,,∴,故選:C【考點(diǎn)】此題綜合運(yùn)用了平角的定義、折疊的性質(zhì)和三角形的內(nèi)角和定理.6、C【解析】【分析】根據(jù)直角三角形的性質(zhì)可得∠BAC=45°,根據(jù)鄰補(bǔ)角互補(bǔ)可得∠EAF=135°,然后再利用三角形的外角的性質(zhì)可得∠AFD=135°+30°=165°.即可.【詳解】解:∵∠B=45°,∴∠BAC=45°,∴∠EAF=135°,∴∠AFD=135°+30°=165°,∴∠BFD=180°﹣∠AFD=15°故選:C.【考點(diǎn)】此題主要考查了三角形的內(nèi)角和,三角形的外角的性質(zhì),關(guān)鍵是掌握三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.7、B【解析】【分析】根據(jù)三角形的外角的性質(zhì)列式計(jì)算即可.【詳解】解:如圖:由三角形的外角的性質(zhì)可知,∠OFK+70°=100°,解得,∠OFK=30°,故選B.【考點(diǎn)】本題考查的是三角形的外角的性質(zhì),掌握三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.8、B【解析】【分析】連接AC并延長交EF于點(diǎn)M.由平行線的性質(zhì)得,,再由等量代換得,先求出即可求出.【詳解】解:連接AC并延長交EF于點(diǎn)M.,,,,,,,故選B.【考點(diǎn)】本題主要考查了平行線的性質(zhì)以及三角形的內(nèi)角和定理,屬于基礎(chǔ)題型.二、填空題1、【解析】【分析】由∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,而P1B、P1C分別平分∠ABC和∠ACD,得到∠ACD=2∠P1CD,∠ABC=2∠P1BC,于是有∠A=2∠P1,同理可得∠P1=2∠P2,即∠A=22∠P2,因此找出規(guī)律.【詳解】∵P1B、P1C分別平分∠ABC和∠ACD,∴∠ACD=2∠P1CD,∠ABC=2∠P1BC,而∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,∴∠A=2∠P1,∴∠P1=∠A,同理可得∠P1=2∠P2,即∠A=22∠P2,∴∠A=2n∠Pn,∴∠Pn=.故答案為:.【考點(diǎn)】本題考查了三角形的內(nèi)角和定理:三角形的內(nèi)角和為180°.也考查了三角形的外角性質(zhì)以及角平分線性質(zhì),難度適中.2、110°【解析】【分析】由DE與AB垂直,利用垂直的定義得到∠BED為直角,進(jìn)而確定出△BDE為直角三角形,利用直角三角形的兩銳角互余,求出∠B的度數(shù),在△ABC中,利用三角形的內(nèi)角和定理即可求出∠ACB的度數(shù).【詳解】解:∵DE⊥AB,∴∠BED=90°,∵∠D=45°,∴∠B=180°-∠BED-∠D=45°,又∵∠A=25°,∵∠ACB=180°-(∠A+∠B)=110°.故答案為110°【考點(diǎn)】此題考查了三角形的外角性質(zhì),直角三角形的性質(zhì),以及三角形的內(nèi)角和定理,熟練掌握性質(zhì)及定理是解本題的關(guān)鍵.3、20°【解析】【分析】先根據(jù)平行線的性質(zhì),得到∠BDC=50°,再根據(jù)∠ADB=30°,即可得出∠2=20°.【詳解】解:∵∠1=130°,∴∠3=50°,又∵l1∥l2,∴∠BDC=50°,又∵∠ADB=30°,∴∠2=20°,故答案為:20°.【考點(diǎn)】本題主要考查了平行線的性質(zhì),解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等.4、##140度【解析】【分析】如圖,首先標(biāo)注字母,利用三角形的內(nèi)角和求解,再利用對頂角的相等,三角形的外角的性質(zhì)可得答案.【詳解】解:如圖,標(biāo)注字母,由題意得:故答案為:【考點(diǎn)】本題考查的是三角形的內(nèi)角和定理,三角形的外角的性質(zhì),掌握以上知識(shí)是解題的關(guān)鍵.5、115【解析】【分析】由三角形外角的性質(zhì)即三角形的內(nèi)角和定理可求解∠DBC+∠ECB=260°,再利用角平分線的定義可求解∠FBC+∠FCB=130°,即可得∠GBC+∠GCB=65°,再利用三角形內(nèi)角和定理可求解.【詳解】解:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=∠A+∠ACB+∠A+∠ABC,∵∠ACB+∠A+∠ABC=180°,∴∠DBC+∠ECB=∠A+180°=80°+180°=260°,∵BF平分外角∠DBC,CF平分外角∠ECB,∴∠FBC=∠DBC,∠FCB=∠ECB,∴∠FBC+∠FCB=(∠DBC+∠ECB)=130°,∵BG平分∠CBF,CG平分∠BCF,∴∠GBC=∠FBC,∠GCB=∠FCB,∴∠GBC+∠GCB=(∠FBC+∠FCB)=65°,∴∠G=180°-(∠GBC-∠GCB)=180°-65°=115°.故答案為:115.【考點(diǎn)】本題主要考查三角形的內(nèi)角和定理,三角形外角的性質(zhì),角平分線的定義,求解∠FBC+∠FCB=130°是解題的關(guān)鍵.6、40°##40度【解析】【分析】根據(jù)入射角等于反射角,可得,根據(jù)三角形內(nèi)角和定理求得,進(jìn)而即可求解.【詳解】解:依題意,,∵,,,∴,.故答案為:40.【考點(diǎn)】本題考查了軸對稱的性質(zhì),三角形內(nèi)角和定理的應(yīng)用,掌握軸對稱的性質(zhì)是解題的關(guān)鍵.7、內(nèi)錯(cuò)角相等,兩直線平行;AB;平行于同一條直線的兩條直線平行;CD;兩直線平行,同旁內(nèi)角互補(bǔ);∠D;180;∠C;180【解析】【分析】由已知角相等,利用內(nèi)錯(cuò)角相等兩直線平行得到AB與EF平行,再由AB與CD平行,利用平行于同一條直線的兩直線平行即可得EF與CD平行,然后由兩直線平行,同旁內(nèi)角互補(bǔ)可得∠E+∠D=180°,最后等量代換得到∠E+∠C=180°.【詳解】解:因?yàn)椤?=∠2,根據(jù)_內(nèi)錯(cuò)角相等,兩直線平行,所以EF∥__AB_.又因?yàn)锳B∥CD,根據(jù)_平行于同一條直線的兩條直線平行,所以EF∥__CD___.根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),所以∠E+_∠D=__180°.又因?yàn)椤螩=∠D,所以∠E+_∠C_=_180°,所以∠E與∠C互為補(bǔ)角.【考點(diǎn)】此題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定與性質(zhì)是解本題的關(guān)鍵.三、解答題1、(1)平行;(2)115°.【解析】【分析】(1)先根據(jù)垂直的定義得到∠CDB=∠EFB=90°,然后根據(jù)同位角相等,兩直線平行可判斷EF∥CD;(2)由EF∥CD,根據(jù)平行線的性質(zhì)得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行得到DG∥BC,所以∠ACB=∠3=115°.【詳解】解:(1)CD與EF平行.理由如下:CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°∴EF∥CD(2)如圖:EF∥CD,∴∠2=∠BCD又∠1=∠2,∴∠1=∠BCD∴DG∥BC,∴∠ACB=∠3=115°.【考點(diǎn)】本題考查了平行線的判定與性質(zhì):同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;兩直線平行,同位角相等.2、(1)見解析(2)BE+CD=BC,(3)①見解析;②【解析】【分析】(1)先根據(jù)三角形內(nèi)角和得:∠BOC=180°?(∠OBC+∠OCB),由角平分線定義得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形內(nèi)角和可得結(jié)論;(2)在BC上截取BM=BE,證明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再證明△DCO≌△MCO可得結(jié)論;(3)①延長OF到點(diǎn)M,使MF=OF,證明△ODF≌△MEF(SAS),推出OD=EM.過點(diǎn)O作CE,BD的垂線,證明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=EM,BE=BK,CD=CH.據(jù)此即可證明結(jié)論;②利用①的結(jié)論以及三角形面積公式即可求解.(1)證明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°?(∠OBC+∠OCB)=180°?(∠ABC+∠ACB)=180°?(180°?∠A)=∠A+90°;(2)解:BE+CD=BC.在BC上截取BM=BE,連接OM,如圖:∵∠BOC=∠A+90°=120°,∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴△BOE≌△BOM,∴∠BOE=∠BOM=60°,∴∠MOC=∠DOC=60°,∵OC為∠DCM的角平分線,∴∠DCO=∠MCO,在△DCO與△MCO中,,∴△DCO≌△MCO(ASA),∴CM=CD,∴BC=BM+CM=BE+CD;(3)①證明:如圖,延長OF到點(diǎn)M,使MF=OF,連接EM,∴OM=2OF.∵F是ED的中點(diǎn),∴EF=DF,∵∠DFO=∠EFM,∴△ODF≌△MEF(SAS),∴OD=EM.過點(diǎn)O作CE,BD的垂線,分別交BC于點(diǎn)K,H,∴∠OCK+∠OKC=90°.∵∠A=90°,∴∠ACE+∠AEC=90°∵∠ACE=∠OCK,∴∠AEO=∠OKC,∴∠BEO=∠BKO,∴△OBE≌△OBK(AAS),同理可得△ODC≌△OHC,∴EO=OK,OD=OH=EM,BE=BK,CD=CH.由(1)可知∠DOE=∠BOC=×90°+90°=135°,∴∠BOE=∠COD=45°,∴∠OEM=∠KOH=45°,∴△OME≌△KHO,∴KH=OM,∴KH=2OF.∵BC?BK?CH=KH=2OE,∴BC?BE?CD=KH=2OF;②解:∵△OME≌△KHO,∴∠EOM=∠OKH,∴FG⊥BC.由①可知KH=2OF=4,△ODF≌△MEF,∴S△DEO=S△OME=S△KHO=10,∴KH×OG×=10,∴OG=5.【考點(diǎn)】本題考查了角平分線的定義、三角形內(nèi)角和定理、三角形全等的性質(zhì)和判定.解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題.3、30°【解析】【分析】根據(jù)全等三角形的性質(zhì)及三角形內(nèi)角和定理,即可求得.【詳解】解:∵△≌△≌△,∴,,又∵,∴,∴,
∵,∴,∴.【考點(diǎn)】本題考查了全等三角形的性質(zhì)及三角形內(nèi)角和定理,求得是解決本題的關(guān)鍵.4、(1);(2);(3)【解析】【分析】(1)根據(jù)三角形的內(nèi)角和定理以及角平分線的定義即可確定和的數(shù)量關(guān)系;(2)根據(jù)三角形的外角性質(zhì)以及角平分線的定義可得,進(jìn)而可得和的數(shù)量關(guān)系;(3)根據(jù)三角形的內(nèi)角和定理可得,,結(jié)合角平分線的定義,根據(jù)即可確定和的數(shù)量關(guān)系.【詳解】(1)在中,.在中,.∵,,∴;(2)在中,.在中,.∵,,∴.(3)在中,.在中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行業(yè)年度策略:聚焦紅利與復(fù)蘇雙主線
- java課程設(shè)計(jì)模擬畫圖程序
- 2025江蘇南京醫(yī)科大學(xué)第四附屬醫(yī)院(南京市浦口醫(yī)院)招聘高層次人才5人考試重點(diǎn)題庫及答案解析
- 必修二數(shù)學(xué)課程設(shè)計(jì)
- 常州市公安局鐘樓分局公開招聘警務(wù)輔助人員20人備考核心題庫及答案解析
- 2025湖南株洲炎陵縣財(cái)政局、縣審計(jì)局招聘專業(yè)人才4人筆試重點(diǎn)題庫及答案解析
- 2026福建龍巖市面向教育部直屬師范大學(xué)、福建省復(fù)合型碩士層次公費(fèi)師范畢業(yè)生“雙向選擇”專項(xiàng)招聘8人考試核心試題及答案解析
- 2025年廣州市正骨醫(yī)院合同制人員招聘備考題庫及1套完整答案詳解
- 《CB 3556-1993水聲換能器用透聲橡膠通 用技術(shù)條件》專題研究報(bào)告
- 2025臨滄市鎮(zhèn)康縣公安局招聘警務(wù)輔助人員(5人)考試重點(diǎn)題庫及答案解析
- 2025年中小學(xué)教育政策與法規(guī)考試試卷及答案
- 企業(yè)網(wǎng)絡(luò)安全體系建設(shè)方案
- 2025上海市崇明區(qū)疾病預(yù)防控制中心(區(qū)衛(wèi)生健康監(jiān)督所)后勤保障崗位招聘3人筆試考試參考題庫及答案解析
- 婦產(chǎn)科學(xué)產(chǎn)褥期并發(fā)癥教案
- 機(jī)動(dòng)車駕駛員考試《科目四》試卷及答案(2025年)
- 醫(yī)療器械經(jīng)營
- 貴州省貴陽市2026屆高三上學(xué)期11月質(zhì)量監(jiān)測(期中)物理試卷(含解析)
- 2025年中國農(nóng)業(yè)無人機(jī)行業(yè)發(fā)展研究報(bào)告
- 雨課堂學(xué)堂在線學(xué)堂云《成語與中國文化(復(fù)旦大學(xué) )》單元測試考核答案
- 河北大教育技術(shù)學(xué)課件05教學(xué)理論
- 樹立正確的生死觀課件
評(píng)論
0/150
提交評(píng)論