版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
京改版數(shù)學9年級上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、由二次函數(shù),可知(
)A.其圖象的開口向下 B.其圖象的對稱軸為直線x=-3C.其最小值為1 D.當x<3時,y隨x的增大而增大2、如圖所示,某校數(shù)學興趣小組利用標桿測量建筑物的高度,已知標桿高,測得,,則建筑物的高是()A. B. C. D.3、在平面直角坐標系中,將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應的函數(shù)表達式為(
)A. B. C. D.4、如圖,點M、N分別是正方形ABCD的邊BC、CD上的兩個動點,在運動過程中保持∠MAN=45°,連接EN、FM相交于點O,以下結(jié)論:①MN=BM+DN;②BE2+DF2=EF2;③BC2=BF?DE;④OM=OF()A.①②③ B.①②④ C.②③④ D.①②③④5、如圖,在RtABC中,∠C=90°,AC=3cm,BC=4cm,D從A出發(fā)沿AC方向以1cm/s向終點C勻速運動,過點D作DEAB交BC于點E,過點E作EF⊥BC交AB于點F,當四邊形ADEF為菱形時,點D運動的時間為()sA. B. C. D.6、關(guān)于的方程有兩個不相等的實根、,若,則的最大值是(
)A.1 B. C. D.2二、多選題(7小題,每小題2分,共計14分)1、對于實數(shù)a,b,定義運算“※”:,例如:4※2,因為,所以,若函數(shù),則下列結(jié)論正確的是(
)A.方程的解為,;B.當時,y隨x的增大而增大;C.若關(guān)于x的方程有三個解,則;D.當時,函數(shù)的最大值為1.2、下列四組圖形中,是相似圖形的是(
)A. B.C. D.3、如圖,在四邊形ABCD中,∠B=∠C,AB=3,CD=2,BC=6,點P是邊BC上的動點,若△ABP與△CDP相似,則BP=(
)A.3.6B.C.D.2.44、不能說明△ABC∽△A’B’C’的條件是(
)A.或 B.且C.且 D.且5、下列多邊形中,一定不相似的是(
)A.兩個矩形 B.兩個菱形 C.兩個正方形 D.兩個平行四邊形6、在△ABC中,∠A、∠B、∠C的對邊分別為a、b、c,且a=5,b=12,c=13,下面四個式子中正確的有()A.sinA= B.cosA= C.tanA= D.sinB=7、在等邊中,,AD是邊BC上的中線,點E是BD上點(不與B、D重合),點F是AC上一點,連接EF交AD于點G,,以下結(jié)論正確的是(
)A.當EF//AB時, B.當時,C. D.點G可能是AD的中點第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、寫出一個滿足“當時,隨增大而減小”的二次函數(shù)解析式______.2、如圖,拋物線與直線交于A(-1,P),B(3,q)兩點,則不等式的解集是_____.3、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,BC的中點為D,將△ABC繞點C順時針旋轉(zhuǎn)任意一個角度得到△FEC,EF的中點為G,連接DG,在旋轉(zhuǎn)過程中,DG的最大值是________4、cos45°-tan60°=________;5、如圖所示,在△ABC中,,,.(1)如圖1,四邊形為的內(nèi)接正方形,則正方形的邊長為_________;(2)如圖2,若△ABC內(nèi)有并排的n個全等的正方形,它們組成的矩形內(nèi)接于,則正方形的邊長為_________.6、比較大?。篲___(填“”“”或“>”)7、如圖,在⊙O中,,,則圖中陰影部分的面積是_________.(結(jié)果保留)四、解答題(6小題,每小題10分,共計60分)1、如圖,在△ABC中,AB=AC,AE⊥AB于A,∠BAC=120°,AE=3cm.求BC的長.2、如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD=1m,窗高CD=1.5m,并測得OE=1m,OF=5m,求圍墻AB的高度.3、每年九月開學前后是文具盒的銷售旺季,商場專門設(shè)置了文具盒專柜李經(jīng)理記錄了天的銷售數(shù)量和銷售單價,其中銷售單價(元/個)與時間第天(為整數(shù))的數(shù)量關(guān)系如圖所示,日銷量(個)與時間第天(為整數(shù))的函數(shù)關(guān)系式為:直接寫出與的函數(shù)關(guān)系式,并注明自變量的取值范圍;設(shè)日銷售額為(元),求(元)關(guān)于(天)的函數(shù)解析式;在這天中,哪一天銷售額(元)達到最大,最大銷售額是多少元;由于需要進貨成本和人員工資等各種開支,如果每天的營業(yè)額低于元,文具盒專柜將虧損,直接寫出哪幾天文具盒專柜處于虧損狀態(tài)4、如圖,在平面直角坐標系中,O為坐標原點,點A坐標為(3,0),四邊形OABC為平行四邊形,反比例函數(shù)y=(x>0)的圖象經(jīng)過點C,與邊AB交于點D,若OC=2,tan∠AOC=1.(1)求反比例函數(shù)解析式;(2)點P(a,0)是x軸上一動點,求|PC-PD|最大時a的值;(3)連接CA,在反比例函數(shù)圖象上是否存在點M,平面內(nèi)是否存在點N,使得四邊形CAMN為矩形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.5、如圖,A,B兩點被池塘隔開,在AB外取一點C,連接AC,BC,在AC上取點M,使AM=3MC,作MN∥AB交BC于點N,量得MN=38m,求AB的長.6、如圖,在平面直角坐標系中,已知拋物線與軸交于,兩點,與軸交于點,連接.(1)求拋物線的解析式;(2)點在拋物線的對稱軸上,當?shù)闹荛L最小時,點的坐標為_____________;(3)點是第四象限內(nèi)拋物線上的動點,連接和.求面積的最大值及此時點的坐標;(4)若點是對稱軸上的動點,在拋物線上是否存在點,使以點、、、為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標;若不存在,請說明理由.-參考答案-一、單選題1、C【解析】【分析】根據(jù)二次函數(shù)的性質(zhì),直接根據(jù)的值得出開口方向,再利用頂點坐標的對稱軸和增減性,分別分析即可.【詳解】解:由二次函數(shù),可知:.,其圖象的開口向上,故此選項錯誤;.其圖象的對稱軸為直線,故此選項錯誤;.其最小值為1,故此選項正確;.當時,隨的增大而減小,故此選項錯誤.故選:.【考點】此題主要考查了二次函數(shù)的性質(zhì),同學們應根據(jù)題意熟練地應用二次函數(shù)性質(zhì),這是中考中考查重點知識.2、A【解析】【分析】先求得AC,再說明△ABE∽△ACD,最后根據(jù)相似三角形的性質(zhì)列方程解答即可.【詳解】解:∵,∴AC=1.2m+12.8m=14m∵標桿和建筑物CD均垂直于地面∴BE//CD∴△ABE∽△ACD∴,即,解得CD=17.5m.故答案為A.【考點】本題考查了相似三角形的應用,正確判定相似三角形并利用相似三角形的性質(zhì)列方程計算是解答本題的關(guān)鍵.3、B【解析】【分析】先求出平移后拋物線的頂點坐標,進而即可得到答案.【詳解】解:∵的頂點坐標為(0,0)∴將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點坐標為(-2,1),∴所得拋物線對應的函數(shù)表達式為,故選B【考點】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點坐標或掌握“左加右減,上加下減”,是解題的關(guān)鍵.4、A【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,由“SAS”可證△AMN≌△AM′N,可得MN=NM′,可得MN=BM+DN,故①正確;由“SAS”可證△AEF≌△AED',可得EF=D'E,由勾股定理可得BE2+DF2=EF2;故②正確;通過證明△DAE∽△BFA,可得,可證BC2=DE?BF,故③正確;通過證明點A,點B,點M,點F四點共圓,∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,可證MO=EO,由∠BAM≠∠DAN,可得OE≠OF,故④錯誤,即可求解.【詳解】解:將△ABM繞點A逆時針旋轉(zhuǎn)90°,得到△ADM′,將△ADF繞點A順時針旋轉(zhuǎn)90°,得到△ABD',∴AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,∴∠ADM'+∠ADC=180°,∴點M'在直線CD上,∵∠MAN=45°,∴∠DAN+∠MAB=45°=∠DAN+∠DAM'=∠M'AN,∴∠M′AN=∠MAN=45°,又∵AN=AN,AM=AM',∴△AMN≌△AM′N(SAS),∴MN=NM′,∴M′N=M′D+DN=BM+DN,∴MN=BM+DN;故①正確;∵將△ADF繞點A順時針旋轉(zhuǎn)90°,得到△ABD',∴AF=AD',DF=D'B,∠ADF=∠ABD'=45°,∠DAF=∠BAD',∴∠D'BE=90°,∵∠MAN=45°,∴∠BAE+∠DAF=45°=∠BAD'+∠BAE=∠D'AE,∴∠D'AE=∠EAF=45°,又∵AE=AE,AF=AD',∴△AEF≌△AED'(SAS),∴EF=D'E,∵D'E2=BE2+D'B2,∴BE2+DF2=EF2;故②正確;∵∠BAF=∠BAE+∠EAF=∠BAE+45°,∠AEF=∠BAE+∠ABE=45°+∠BAE,∴∠BAF=∠AEF,又∵∠ABF=∠ADE=45°,∴△DAE∽△BFA,∴,又∵AB=AD=BC,∴BC2=DE?BF,故③正確;∵∠FBM=∠FAM=45°,∴點A,點B,點M,點F四點共圓,∴∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,同理可求∠AEN=90°,∠DAN=∠DEN,∴∠EOM=45°=∠EMO,∴EO=EM,∴MO=EO,∵∠BAM≠∠DAN,∴∠BFM≠∠DEN,∴EO≠FO,∴OM≠FO,故④錯誤,故選:A.【考點】本題考查了全等三角形的判定和性質(zhì),正方形的性質(zhì),相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì)等知識,添加恰當輔助線構(gòu)造全等三角形是解題的關(guān)鍵.5、D【解析】【分析】由勾股定理可求AB的長,由銳角三角函數(shù)可得,即可求解.【詳解】解:設(shè)經(jīng)過t秒后,四邊形ADEF是菱形,∴AD=DE=t,DE∥AB,∴CD=(3-t)(cm),∠ABC=∠DEC,∵∠C=90°,AC=3cm,BC=4cm,∴(cm),∵sin∠DEC=sin∠ABC=,∴,∴,故選:D.【考點】本題考查了菱形的性質(zhì),勾股定理,銳角三角函數(shù)等知識,靈活運用這些性質(zhì)解決問題是本題的關(guān)鍵.6、D【解析】【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系,求得兩根之和和兩根之積,再根據(jù)兩根關(guān)系,求得系數(shù)的關(guān)系,代入代數(shù)式,配方法化簡求值即可.【詳解】解:由方程有兩個不相等的實根、可得,,,∵,可得,,即化簡得則故最大值為故選D【考點】此題考查了一元二次方程根與系數(shù)的關(guān)系,涉及了配方法求解代數(shù)式的最大值,根據(jù)一元二次方程根與系數(shù)的關(guān)系得到系數(shù)的關(guān)系是解題的關(guān)鍵.二、多選題1、ABD【解析】【分析】根據(jù)題干定義求出y=(2x)※(x+1)的解析式,根據(jù)2x≥x+1及2x<x+1可得x≥1時y=2x2﹣2x,x<1時,y=﹣x2+1,進而求解.【詳解】解:根據(jù)題意得:當2x≥x+1,即x≥1時,y=(2x)2﹣2x(x+1)=2x2﹣2x,當2x<x+1,即x<1時,y=(x+1)2﹣2x(x+1)=﹣x2+1,∴當x≥1時,2x2﹣2x=0,解得x=0(舍去)或x=1,當x<1時,﹣x2+1=0,解得x=1(舍去)或x=﹣1,∴(2x)※(x+1)=0的解是x1=﹣1,x2=1;故A正確,B、當x>1時,y=2x2﹣2x,拋物線開口向上,對稱軸是直線x=,∴x>1時,y隨x的增大而增大,∴B選項正確.當x≥1時,y=2x2﹣2x=2(x﹣)2﹣,∴x=1時,y取最小值為y=0,當x<1時,y=﹣x2+1=0,當x=0時,y取最大值為y=1,如圖,當0<m<1時,方程(2x)※(x+1)=m有三個解,∴選項C錯誤,選項D正確.故答案為:ABD.【考點】本題考查二次函數(shù)的新定義問題,解題關(guān)鍵是掌握二次函數(shù)的性質(zhì),掌握二次函數(shù)與方程的關(guān)系.2、ABC【解析】【分析】根據(jù)相似圖形的定義,對選項進行一一分析,排除錯誤答案.【詳解】解:A、形狀相同,但大小不同,符合相似形的定義,故符合題意;B、形狀相同,但大小不同,符合相似形的定義,故符合題意;C、形狀相同,但大小不同,符合相似形的定義,故符合題意;D、形狀不相同,不符合相似形的定義,故不符合題意;故選:ABC.【考點】本題考查的是相似形的定義,結(jié)合圖形,即圖形的形狀相同,但大小不一定相同的變換是相似變換.3、ABC【解析】【分析】根據(jù)相似求出相似比,根據(jù)相似比分類討論計算出結(jié)果即可.【詳解】解:∠B=∠C,根據(jù)題意:或,則:或,則:或,故答案為:或,故選:ABC.【考點】本題考查相似三角形得的性質(zhì)與應用,能夠熟練掌握相似三角形的性質(zhì)是解決本題的關(guān)鍵.4、ABD【解析】【分析】根據(jù)相似三角形的判定方法求解即可.【詳解】解:A、或,不能判定,符合題意;B、且,不能判定,符合題意;C、且,能判定,不符合題意;D、且,不能判定,符合題意.故選:ABD.【考點】此題考查了相似三角形的判定方法,解題的關(guān)鍵是熟練掌握相似三角形的判定方法.相似三角形的判定方法:兩邊對應成比例且夾角相等的兩個三角形相似;三邊對應成比例的兩個三角形相似;兩角對應相等的兩個三角形相似.5、ABD【解析】【分析】利用相似多邊形的對應邊的比相等,對應角相等分析.【詳解】解:要判斷兩個多邊形是否相似,需要看對應角是否相等,對應邊的比是否相等.矩形、菱形、平行四邊形都屬于形狀不唯一確定的圖形,即對應角、對應邊的比不一定相等,故不一定相似,選項A、B、D符合題意;而兩個正方形,對應角都是90°,對應邊的比也都相等,故一定相似,選項C不符合題意.故選:ABD.【考點】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應邊的比相等,對應角相等.兩個條件必須同時具備.6、AC【解析】【分析】由a、b、c的關(guān)系可知,△ABC是直角三角形,然后根據(jù)銳角三角函數(shù)的定義求各角函數(shù)值.【詳解】解:由題意,∠A,∠B,∠C對邊分別為a,b,c,a=5,b=12,c=13,∴△ABC是直角三角形,∠C=90°.∴A、sinA=,該選項正確,符合題意;B、cosA=,該選項不正確,不符合題意;C、tanA=,該選項正確,符合題意;D、sinB=,該選項不正確,不符合題意;故選:AC.【考點】本題考查的是銳角三角函數(shù)的定義,銳角A的對邊a與斜邊c的比叫做∠A的正弦;銳角A的鄰邊b與斜邊c的比叫做∠A的余弦;銳角A的對邊a與鄰邊b的比叫做∠A的正切.7、ABC【解析】【分析】由題意分別畫出圖形,然后對選項逐一判斷即可.【詳解】解:A、如圖:,,∵等邊,也為等邊三角形,,,,,;故A選項正確;B、如圖:∵等邊,,,,,;故B正確;C、如圖所示:過點F作于點H,,,,,,,,,是等邊三角形,AD是邊BC上的中線,,,,,故選項C正確;D、若G是AD的中點,,則四邊形AEDF為平行四邊形,由題意可得:,故假設(shè)不成立,故選項D不正確.故選:ABC.【考點】本題考查了等邊三角形的性質(zhì),平行線的性質(zhì),平行四邊形的判定,銳角三角函數(shù),相似三角形的判定與性質(zhì),熟練掌握以上性質(zhì)和判定是解題的關(guān)鍵.三、填空題1、(答案不唯一)【解析】【分析】先根據(jù)二次函數(shù)的圖象和性質(zhì)取對稱軸x=2,設(shè)拋物線的解析式為y=a(x-2)2,由于在拋物線對稱軸的右邊,y隨x增大而減小,得出a<0,于是去a=-1,即可解答.【詳解】解:設(shè)拋物線的解析式為y=a(x-2)2,∵在拋物線對稱軸的右邊,y隨x增大而減小,∴a<0,符合上述條件的二次函數(shù)均可,可取a=-1,則y=-(x-2)2.故答案為:y=-(x-2)2.【考點】本題考查了二次函數(shù)的圖象和性質(zhì),解題的關(guān)鍵是掌握二次函數(shù)的圖象和性質(zhì).2、或.【解析】【分析】由可變形為,即比較拋物線與直線之間關(guān)系,而直線PQ:與直線AB:關(guān)于與y軸對稱,由此可知拋物線與直線交于,兩點,再觀察兩函數(shù)圖象的上下位置關(guān)系,即可得出結(jié)論.【詳解】解:∵拋物線與直線交于,兩點,∴,,∴拋物線與直線交于,兩點,觀察函數(shù)圖象可知:當或時,直線在拋物線的下方,∴不等式的解集為或.故答案為或.【考點】本題考查了二次函數(shù)與不等式,根據(jù)兩函數(shù)圖象的上下位置關(guān)系找出不等式的解集是解題的關(guān)鍵.3、6【解析】【分析】解直角三角形求出AB、BC,再求出CD,連接CG,根據(jù)直角三角形斜邊上的中線等于斜邊的一半求出CG,然后根據(jù)三角形的任意兩邊之和大于第三邊判斷出D、C、G三點共線時DG有最大值,再代入數(shù)據(jù)進行計算即可得解.【詳解】連接CG,∵BC的中點為D∵△ABC繞點C順時針旋轉(zhuǎn)任意一個角度得到△FEC,EF的中點為G由三角形的三邊關(guān)系得∴D、C、G三點共線時,DG有最大值故答案為:6.【考點】本題考查了旋轉(zhuǎn)三角形的問題,掌握旋轉(zhuǎn)的性質(zhì)、解直角三角形、三角形的三邊關(guān)系是解題的關(guān)鍵.4、【解析】【分析】根據(jù)特殊角的三角函數(shù)值進行計算.【詳解】解:原式.故答案是:.【考點】本題考查特殊角的三角函數(shù)值,解題的關(guān)鍵是記住特殊角的三角函數(shù)值.5、
【解析】【分析】(1)根據(jù)題意畫出圖形,作CN⊥AB,再根據(jù)GF∥AB,可知△CGF∽△CAB,由相似三角形的性質(zhì)即可求出正方形的邊長;(2)設(shè)正方形的邊長是x,則過點C作CN⊥AB,垂足為N,交GF于點M,易得△CGF∽△CAB,所以,求出x值即可.【詳解】解:(1)在圖1中,作CN⊥AB,交GF于點M,交AB于點N.在Rt△ABC中,∵AC=4,BC=3,∴AB=5,∴AB?CN=BC?AC,∴CN=,∵GF∥AB,∴△CGF∽△CAB,∴CM:CN=GF:AB,設(shè)正方形邊長為x,則,解得:,∴正方形DEFG的邊長為;(2)如圖,過點C作CN⊥AB,垂足為N,交GF于點M,設(shè)小正方形的邊長為x,∵四邊形GDEF為矩形,∴GF∥AB,CM⊥GF,同理算出CN=,∴,即,∴,即小正方形的邊長是.【考點】本題主要考查了正方形,矩形的性質(zhì)和相似三角形的性質(zhì).會利用三角形相似中的相似比來得到相關(guān)的線段之間的等量關(guān)系是解題的關(guān)鍵.6、【解析】【分析】根據(jù)三角函數(shù)的性質(zhì)得,即可比較它們的大小關(guān)系.【詳解】∵∴故答案為:<.【考點】本題考查了三角函數(shù)值大小比較的問題,掌握三角函數(shù)的性質(zhì)是解題的關(guān)鍵.7、【解析】【分析】由,根據(jù)圓周角定理得出,根據(jù)S陰影=S扇形AOB-可得出結(jié)論.【詳解】解:∵,∴,∴S陰影=S扇形AOB-,故答案為:.【考點】本題主要考查圓周角定理、扇形的面積計算,根據(jù)題意求得三角形與扇形的面積是解答此題的關(guān)鍵.四、解答題1、9【解析】【分析】過點A作AF⊥BC交BC于F,則由已知得:BC=2BF,首先由AB=AC,∠BAC=120°得∠B=∠C=30°,則在直角三角形BAE中求出AB,再在直角三角形AFB中求出BF,從而求出BC.【詳解】解:過點A作AF⊥BC交BC于F,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,BC=2BF,在Rt△BAE中,AE=3cm,∴AB=cm,在Rt△AFB中,BF=AB?cos30°=,∴BC=2BF=2×=9.【考點】本題考查了等腰三角形的性質(zhì)和解直角三角形,通過作輔助線構(gòu)造直角三角形是解題關(guān)鍵2、4m【解析】【分析】首先根據(jù)DO=OE=1m,可得∠DEB=45°,然后證明AB=BE,再證明△ABF∽△COF,可得,然后代入數(shù)值可得方程,解出方程即可得到答案.【詳解】解:延長OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,設(shè)AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴,,解得:x=4.經(jīng)檢驗:x=4是原方程的解.答:圍墻AB的高度是4m.【考點】此題主要考查了相似三角形的應用,解決問題的關(guān)鍵是求出AB=BE,根據(jù)相似三角形的判定方法證明△ABF∽△COF.3、(1)y=,(2)w=,在這15天中,第9天銷售額達到最大,最大銷售額是3600元,(3)第13天、第14天、第15天這3天,專柜處于虧損狀態(tài).【解析】【分析】(1)用待定系數(shù)法可求與的函數(shù)關(guān)系式;(2)利用總銷售額=銷售單價×銷售量,分三種情況,找到(元)關(guān)于(天)的函數(shù)解析式,然后根據(jù)函數(shù)的性質(zhì)即可找到最大值.(3)先根據(jù)第(2)問的結(jié)論判斷出在這三段內(nèi)哪一段內(nèi)會出現(xiàn)虧損,然后列出不等式求出x的范圍,即可找到答案.【詳解】解:(1)當時,設(shè)直線的表達式為將代入到表達式中得解得∴當時,直線的表達式為∴y=,(2)由已知得:w=py.當1≤x≤5時,w=py=(-x+15)(20x+180)=-20x2+120x+2700=-20(x-3)2+2880,當x=3時,w取最大值2880,當5<x≤9時,w=10(20x+180)=200x+1800,∵x是整數(shù),200>0,∴當5<x≤9時,w隨x的增大而增大,∴當x=9時,w有最大值為200×9+1800=3600,當9<x≤15時,w=10(-60x+900)=-600x+9000,∵-600<0,∴w隨x的增大而減小,又∵x=9時,w=-600×9+9000=3600.∴當9<x≤15時,W的最大值小于3600綜合得:w=,在這15天中,第9天銷售額達到最大,最大銷售額是3600元.(3)當時,當時,y有最小值,最小值為∴不會有虧損當時,當時,y有最小值,最小值為∴不會有虧損當時,解得∵x為正整數(shù)∴∴第13天、第14天、第15天這3天,專柜處于虧損狀態(tài).【考點】本題主要考查二次函數(shù)和一次函數(shù)的實際應用,掌握二次函數(shù)和一次函數(shù)的性質(zhì)是解題的關(guān)鍵.4、(1)(2)|PC?PD|最大時a的值為6(3)存在,點M的坐標為(,)【解析】【分析】(1)先確定出OE=CE=2,即可得出點C坐標,最后用待定系數(shù)法即可得出結(jié)論;(2)先求出OC解析式,由平行四邊形的性質(zhì)可得BC=OA=3,BC∥OA,AB∥OC,利用待定系數(shù)法可求AB解析式,求出點D的坐標,再根據(jù)三角形關(guān)系可得出當點P,C,D三點共線時,|PC-PD|最大,求出直線CD的解析式,令y=0即可求解;(3)若四邊形CAMN為矩形,則△CAM是直角三角形且AC為一條直角邊,根據(jù)直角頂點需要分兩種情況,畫出圖形分別求解即可.(1)解:如圖1,過點C作CE⊥x軸于E,∴∠CEO=90°,∵tan∠AOC=1,∴∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵點C在反比例函數(shù)圖象上,∴k=2×2=4,∴反比例函數(shù)解析式為y=;(2)解:∵點C(2,2),點O(0,0),∴OC解析式為:y=x,∵四邊形OABC是平行四邊形,點A坐標為(3,0),∴BC=OA=3,BC∥OA,AB∥OC,∴點B(5,2),∴設(shè)AB解析式為:y=x+b,∴2=5+b,∴b=-3,∴AB解析式為:y=x-3,聯(lián)立方程組可得:,∴或(舍去),∴點D(4,1);在△PCD中,|PC-PD|<CD,則當點P,C,D三點共線時,|PC-PD|=CD,此時,|PC-PD|取得最大值,由(1)知C(2,2),D(4,1),設(shè)直線CD的解析式為:y=mx+n,∴,解得,∴直線CD的解析式為:y=x+3,令y=0,即x+3=0,得x=6,∴|PC-PD|最大時a的值為6;(3)(3)存在,理由如下:若四邊形CAMN為矩形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 手機買斷協(xié)議書
- 苗圃管護協(xié)議書
- 苗木賠償協(xié)議書
- 解約10天協(xié)議書
- 認購保障協(xié)議書
- 設(shè)備入駐協(xié)議書
- 設(shè)備檢測協(xié)議書
- 設(shè)施轉(zhuǎn)讓協(xié)議書
- 評殘醫(yī)生協(xié)議書
- 請人抽沙協(xié)議書
- 2025大理州強制隔離戒毒所招聘輔警(5人)筆試考試備考題庫及答案解析
- 2025年安全培訓計劃表
- 2026年榆林職業(yè)技術(shù)學院單招職業(yè)技能測試題庫參考答案詳解
- 2025年沈陽華晨專用車有限公司公開招聘筆試歷年參考題庫附帶答案詳解
- 2026(蘇教版)數(shù)學五上期末復習大全(知識梳理+易錯題+壓軸題+模擬卷)
- 垃圾中轉(zhuǎn)站機械設(shè)備日常維護操作指南
- 汽車行業(yè)可信數(shù)據(jù)空間方案
- 畜牧業(yè)機械化培訓課件
- 工程質(zhì)量管理工作制度
- 云南交投集團筆試試題及答案
- 東華大學《大學物理A》2025 - 2026學年第一學期期末試卷(A卷)
評論
0/150
提交評論