版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
中考數(shù)學總復(fù)習《圓》考前沖刺練習題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、一個等腰直角三角形的內(nèi)切圓與外接圓的半徑之比為(
)A. B. C. D.2、在平面直角坐標系xOy中,已知點A(4,3),以原點O為圓心,5為半徑作⊙O,則()A.點A在⊙O上B.點A在⊙O內(nèi)C.點A在⊙O外D.點A與⊙O的位置關(guān)系無法確定3、如圖,已知長方形中,,圓B的半徑為1,圓A與圓B內(nèi)切,則點與圓A的位置關(guān)系是(
)A.點C在圓A外,點D在圓A內(nèi) B.點C在圓A外,點D在圓A外C.點C在圓A上,點D在圓A內(nèi) D.點C在圓A內(nèi),點D在圓A外4、如圖,AB是⊙O的弦,等邊三角形OCD的邊CD與⊙O相切于點P,連接OA,OB,OP,AD.若∠COD+∠AOB=180°,AB=6,則AD的長是()A.6 B.3 C.2 D.5、如圖,AB是的直徑,點B是弧CD的中點,AB交弦CD于E,且,,則(
)A.2 B.3 C.4 D.5第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,直線、相交于點,半徑為1cm的⊙的圓心在直線上,且與點的距離為8cm,如果⊙以2cm/s的速度,由向的方向運動,那么_________秒后⊙與直線相切.2、劉徽是我國魏晉時期卓越的數(shù)學家,他在《九章算術(shù)》中提出了“割圓術(shù)”,利用圓的內(nèi)接正多邊形逐步逼近圓來近似計算圓的面積,如圖,若用圓的內(nèi)接正十二邊形的面積來近似估計的面積,設(shè)的半徑為1,則__________.3、如圖,在中,,,,將繞順時針旋轉(zhuǎn)后得,將線段繞點逆時針旋轉(zhuǎn)后得線段,分別以,為圓心,、長為半徑畫弧和弧,連接,則圖中陰影部分面積是________.4、如圖,正五邊形ABCDE內(nèi)接于⊙O,點F在上,則∠CFD=_____度.5、一個扇形的圓心角是120°.它的半徑是3cm.則扇形的弧長為__________cm.三、解答題(5小題,每小題10分,共計50分)1、如圖,在四邊形中,,.是四邊形內(nèi)一點,且.求證:(1);(2)四邊形是菱形.2、如圖,是的直徑,點是上一點,點是延長線上一點,,是的弦,.(1)求證:直線是的切線;(2)若,求的半徑;(3)若于點,點為上一點,連接,,,請找出,,之間的關(guān)系,并證明.3、如圖,AB是⊙O的直徑,C是⊙O上一點,D在AB的延長線上,且∠BCD=∠A.(1)求證:CD是⊙O的切線;(2)若⊙O的半徑為3,CD=4,求BD的長.4、如圖,四邊形ABCD是平行四邊形,點A,B,D均在圓上.請僅用無刻度的直尺分別下列要求畫圖.(1)在圖①中,若AB是直徑,CD與圓相切,畫出圓心;(2)在圖②中,若CB,CD均與圓相切,畫出圓心.5、已知:A、B、C、D是⊙O上的四個點,且,求證:AC=BD.-參考答案-一、單選題1、D【解析】【分析】設(shè)等腰直角三角形的直角邊是1,則其斜邊是.根據(jù)直角三角形的內(nèi)切圓半徑是兩條直角邊的和與斜邊的差的一半,得其內(nèi)切圓半徑是;其外接圓半徑是斜邊的一半,得其外接圓半徑是.所以它們的比為=.【詳解】解:設(shè)等腰直角三角形的直角邊是1,則其斜邊是;∵內(nèi)切圓半徑是,外接圓半徑是,∴所以它們的比為=.故選:D.【考點】本題考查三角形的內(nèi)切圓與外接圓的知識,解題的關(guān)鍵是熟記直角三角形外接圓的半徑和內(nèi)切圓的半徑公式:直角三角形的內(nèi)切圓半徑等于兩條直角邊的和與斜邊的差的一半;直角三角形外接圓的半徑是斜邊的一半.2、A【解析】【分析】先求出點A到圓心O的距離,再根據(jù)點與圓的位置依據(jù)判斷可得.【詳解】解:∵點A(4,3)到圓心O的距離,∴OA=r=5,∴點A在⊙O上,故選:A.【考點】本題考查了對點與圓的位置關(guān)系的判斷.關(guān)鍵要記住若半徑為,點到圓心的距離為,則有:當時,點在圓外;當時,點在圓上,當時,點在圓內(nèi),也考查了勾股定理的應(yīng)用.3、C【解析】【分析】根據(jù)內(nèi)切得出圓A的半徑,再判斷點D、點E到圓心的距離即可【詳解】∵圓A與圓B內(nèi)切,,圓B的半徑為1∴圓A的半徑為5∵<5∴點D在圓A內(nèi)在Rt△ABC中,∴點C在圓A上故選:C【考點】本題考查點與圓的位置關(guān)系、圓與圓的位置關(guān)系、勾股定理,熟練掌握點與圓的位置關(guān)系是關(guān)鍵4、C【解析】【分析】如圖,過作于過作于先證明三點共線,再求解的半徑,證明四邊形是矩形,再求解從而利用勾股定理可得答案.【詳解】解:如圖,過作于過作于是的切線,三點共線,為等邊三角形,四邊形是矩形,故選:【考點】本題考查的是等腰三角形,等邊三角形的性質(zhì),勾股定理的應(yīng)用,矩形的判定與性質(zhì),切線的性質(zhì),銳角三角函數(shù)的應(yīng)用,靈活應(yīng)用以上知識是解題的關(guān)鍵.5、C【解析】【分析】是的直徑,點是弧的中點,從而可知,然后利用勾股定理即可求出的長度.【詳解】解:設(shè)半徑為,連接,是的直徑,點是弧的中點,由垂徑定理可知:,且點是的中點,,,由勾股定理可知:,由勾股定理可知:,解得:,故選:C.【考點】本題考查垂徑定理,解題的關(guān)鍵是正確理解垂徑定理以及勾股定理,本題屬于中等題型二、填空題1、3或5【解析】【分析】分類討論:當點P在當點P在射線OA時⊙P與CD相切,過P作PE⊥CD與E,根據(jù)切線的性質(zhì)得到PE=1cm,再利用含30°的直角三角形三邊的關(guān)系得到OP=2PE=2cm,則⊙P的圓心在直線AB上向右移動了(8-2)cm后與CD相切,即可得到⊙P移動所用的時間;當點P在射線OB時⊙P與CD相切,過P作PE⊥CD與F,同前面一樣易得到此時⊙P移動所用的時間.【詳解】當點P在射線OA時⊙P與CD相切,如圖,過P作PE⊥CD與E,∴PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P的圓心在直線AB上向右移動了(8-2)cm后與CD相切,∴⊙P移動所用的時間==3(秒);當點P在射線OB時⊙P與CD相切,如圖,過P作PE⊥CD與F,∴PF=1cm,∵∠AOC=∠DOB=30°,∴OP=2PF=2cm,∴⊙P的圓心在直線AB上向右移動了(8+2)cm后與CD相切,∴⊙P移動所用的時間==5(秒).故答案為3或5.【考點】本題考查直線與圓的位置關(guān)系:直線與有三種位置關(guān)系(相切、相交、相離).也考查了切線的性質(zhì).解題關(guān)鍵是熟練掌握以上性質(zhì).2、【解析】【分析】如圖,過點A作AC⊥OB,垂足為C,先求出圓的面積,再求出△ABC面積,繼而求得正十二邊形的面積即可求得答案.【詳解】如圖,過點A作AC⊥OB,垂足為C,∵的半徑為1,∴的面積,OA=OB=1,∴圓的內(nèi)接正十二邊形的中心角為∠AOB=,∴AC=OB=,∴S△AOB=OB?AC=,∴圓的內(nèi)接正十二邊形的面積S1=12S△AOB=3,∴則,故答案為.【考點】本題考查了正多邊形與圓,正確的求出正十二邊形的面積是解題的關(guān)鍵.3、【解析】【分析】作DH⊥AE于H,根據(jù)勾股定理求出AB,根據(jù)陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積計算即可得到答案.【詳解】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴,由旋轉(zhuǎn)得△EOF≌△BOA,∴∠OAB=∠EFO,∵∠FEO+∠EFO=∠FEO+∠HED=90°,∴∠EFO=∠HED,∴∠HED=∠OAB,∵∠DHE=∠AOB=90°,,∴△DHE≌△BOA(AAS),∴DH=OB=1,,∴陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積,故答案為:.【考點】本題考查的是扇形面積的計算、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì),掌握扇形的面積公式和旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.4、36.【解析】【分析】連接OC,OD.求出∠COD的度數(shù),再根據(jù)圓周角定理即可解決問題.【詳解】如圖,連接OC,OD.∵五邊形ABCDE是正五邊形,∴∠COD==72°,∴∠CFD=∠COD=36°,故答案為:36.【考點】本題考查了正多邊形和圓、圓周角定理等知識,解題的關(guān)鍵是熟練掌握基本知識.5、2π【解析】【詳解】分析:根據(jù)弧長公式可得結(jié)論.詳解:根據(jù)題意,扇形的弧長為=2π,故答案為2π點睛:本題主要考查弧長的計算,熟練掌握弧長公式是解題的關(guān)鍵.三、解答題1、(1)證明見解析;(2)證明見解析.【解析】【詳解】分析:(1)先證點、、共圓,從而得到,又,即可得出結(jié)論;(2)連接,證得到又由于,,結(jié)合可得BO=BC,從而四邊形是菱形.詳解:(1)∵.∴點、、在以點為圓心,為半徑的圓上.∴.又,∴.(2)證明:如圖②,連接.∵,,,∴.∴,.∵,,∴,.又.∴,∴.又,,∴,∴四邊形是菱形.點睛:本題考查圓周角定理、全等三角形的判定和性質(zhì)、菱形的判定等知識,解題的關(guān)鍵是靈活應(yīng)用圓周角定理,學會添加常用輔助線,屬于中考??碱}型2、(1)見解析;(2)3;(3),理由見解析【解析】【分析】(1)先求出∠BAD=120°,再求出∠OAB,進而得出∠OAD=90°,即可得出結(jié)論;(2)先判斷出△AOC是等邊三角形,得出AC=OC,再判斷出AC=CD,即可得出結(jié)論;(3)先判斷出∠CAP=∠CEM,進而得出△ACP≌△ECM(SAS),進而得出CM=CP,∠APC=∠M=30°,再判斷出,即可得出結(jié)論.【詳解】(1)證明:如圖,連接,,,,,,,,,點在上,∴直線是的切線;(2)解:如圖1,連接,由(1)知,,,,是等邊三角形,,,,,,即的半徑為3;(3),理由:如圖,,,連接,延長至,使,連接,,為的直徑,,四邊形是的內(nèi)接四邊形,,,,,過點作于,,在中,,,,,,,即.【考點】此題是圓的綜合題,主要考查了切線的判定和性質(zhì),等邊三角形的判定和勾股定理,構(gòu)造出直角三角形是解本題的關(guān)鍵.3、(1)證明見解析(2)2【解析】【分析】(1)連接OC,由AB是⊙O的直徑可得出∠ACB=90°,即∠ACO+∠OCB=90°,由等腰三角形的性質(zhì)結(jié)合∠BCD=∠A,即可得出∠OCD=90°,即CD是⊙O的切線;(2)在Rt△OCD中,由勾股定理可求出OD的值,進而可得出BD的長.【詳解】解:(1)如圖,連接OC.∵AB是⊙O的直徑,C是⊙O上一點,∴∠ACB=90°,即∠ACO+∠OCB=90°.∵OA=OC,∠BCD=∠A,∴∠ACO=∠A=∠BCD,∴∠BCD+∠OCB=90°,即∠OCD=90°,∴CD是⊙O的切線.(2)在Rt△OCD中,∠OCD=90°,OC=3,CD=4,∴OD==5,∴BD=OD﹣OB=5﹣3=2.4、(1)見解析;(2)見解析【解析】【分析】(1)延長CB交圓于一點,把這點與點D連接,與AB交點即為圓心;(2)連接AC、BD交于點G,AC交圓于點E,射線DE交BC于F,射線FG交DA于H,連接BH交AC于O即可.【詳解】(1)如圖1所示,延長CB交圓于點E,連接DE,與AB交點即為圓心;由已知可得∠A+∠DBA=90°,∠EBA=∠C=∠A,故∠EBA+∠DBA=90°,DE為直徑;(2)如圖2所示,連接AC、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 證券公司財務(wù)分析崗位面試題及答案
- 交通運輸崗位實操技能與面試題解析
- 玫瑰痤瘡術(shù)后皮膚修復(fù)營養(yǎng)支持方案
- 深度解析(2026)GBT 19215.2-2003電氣安裝用電纜槽管系統(tǒng) 第2部分特殊要求 第1節(jié)用于安裝在墻上或天花板上的電纜槽管系統(tǒng)
- 環(huán)境保育實踐者環(huán)保項目專員面試題及答案
- 獨居老人術(shù)后營養(yǎng)支持方案
- 總經(jīng)理崗位職責考核制度
- 深度解析(2026)《GBT 19045-2003明細表的編制》(2026年)深度解析
- 冷卻機項目可行性分析報告范文(總投資6000萬元)
- 深度解析(2026)《GBT 18916.29-2017取水定額 第29部分:燒堿》
- 成都理工大學《數(shù)字電子技術(shù)基礎(chǔ)》2023-2024學年第一學期期末試卷
- 化肥生產(chǎn)企業(yè)應(yīng)急響應(yīng)預(yù)案
- 山東省濟南市歷下區(qū)2024-2025學年九年級上學期期中考試化學試題(含答案)
- JBT 9212-2010 無損檢測 常壓鋼質(zhì)儲罐焊縫超聲檢測方法
- 《食品標準與法律法規(guī)》課件-第二章 我國食品標準體系
- 消毒隔離制度課件
- 成品綜合支吊架深化設(shè)計及施工技術(shù)專項方案
- 改革開放簡史智慧樹知到課后章節(jié)答案2023年下北方工業(yè)大學
- 木薯變性淀粉生產(chǎn)應(yīng)用課件
- 校門安全管理“十條”
- 超全QC管理流程圖
評論
0/150
提交評論