中考數(shù)學(xué)總復(fù)習(xí)《 圓》高分題庫審定版附答案詳解_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高分題庫審定版附答案詳解_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高分題庫審定版附答案詳解_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高分題庫審定版附答案詳解_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高分題庫審定版附答案詳解_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《圓》高分題庫考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、已知中,,,,點(diǎn)P為邊AB的中點(diǎn),以點(diǎn)C為圓心,長度r為半徑畫圓,使得點(diǎn)A,P在⊙C內(nèi),點(diǎn)B在⊙C外,則半徑r的取值范圍是(

)A. B. C. D.2、已知點(diǎn)在半徑為8的外,則(

)A. B. C. D.3、如圖,⊙O的半徑為5,AB為弦,點(diǎn)C為的中點(diǎn),若∠ABC=30°,則弦AB的長為()A. B.5 C. D.54、已知圓的半徑為扇形的圓心角為,則扇形的面積為(

)A. B. C. D.5、已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是()A.30° B.60° C.30°或150° D.60°或120°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,直線、相交于點(diǎn),半徑為1cm的⊙的圓心在直線上,且與點(diǎn)的距離為8cm,如果⊙以2cm/s的速度,由向的方向運(yùn)動(dòng),那么_________秒后⊙與直線相切.2、如圖,四邊形ABCD內(nèi)接于⊙O,∠A=125°,則∠C的度數(shù)為______.3、如圖,在的方格紙中,每個(gè)小方格都是邊長為1的正方形,其中A、B、C為格點(diǎn),作的外接圓,則的長等于_____.4、如圖,已知點(diǎn)C是⊙O的直徑AB上的一點(diǎn),過點(diǎn)C作弦DE,使CD=CO.若AD的度數(shù)為35°,則的度數(shù)是_____.5、如圖所示的扇形中,,C為上一點(diǎn),,連接,過C作的垂線交于點(diǎn)D,則圖中陰影部分的面積為_______.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,點(diǎn)A,B,C,D在⊙O上,=.求證:(1)AC=BD;(2)△ABE∽△DCE.2、如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)P⊙O上,∠1=∠C.(1)求證:CB∥PD;(2)若∠ABC=55°,求∠P的度數(shù).3、如圖,已知AB是⊙O的直徑,C,D是⊙O上的點(diǎn),OC∥BD,交AD于點(diǎn)E,連結(jié)BC.(1)求證:AE=ED;(2)若AB=10,∠CBD=36°,求的長.4、如圖,正方形ABCD的外接圓為⊙O,點(diǎn)P在劣弧CD上(不與C點(diǎn)重合).(1)求∠BPC的度數(shù);(2)若⊙O的半徑為8,求正方形ABCD的邊長.5、如圖1,正方形ABCD中,點(diǎn)P、Q是對角線BD上的兩個(gè)動(dòng)點(diǎn),點(diǎn)P從點(diǎn)B出發(fā)沿著BD以1cm/s的速度向點(diǎn)D運(yùn)動(dòng);點(diǎn)Q同時(shí)從點(diǎn)D出發(fā)沿著DB以2cm的速度向點(diǎn)B運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為xs,△AQP的面積為ycm2,y與x的函數(shù)圖象如圖2所示,根據(jù)圖象回答下列問題:(1)a=.(2)當(dāng)x為何值時(shí),APQ的面積為6cm2;(3)當(dāng)x為何值時(shí),以PQ為直徑的圓與APQ的邊有且只有三個(gè)公共點(diǎn).-參考答案-一、單選題1、D【解析】【分析】根據(jù)勾股定理,得AB=5,由P為AB的中點(diǎn),得CP=,要使點(diǎn)A,P在⊙C內(nèi),r>3,r<4,從而確定r的取值范圍.【詳解】∵點(diǎn)A在⊙C內(nèi),∴r>3,∵點(diǎn)B在⊙C外,∴r<4,∴,故選:D.【考點(diǎn)】本題考查了點(diǎn)和圓的位置關(guān)系,利用數(shù)形結(jié)合思想是解題的關(guān)鍵.2、A【解析】【分析】根據(jù)點(diǎn)P與⊙O的位置關(guān)系即可確定OP的范圍.【詳解】解:∵點(diǎn)P在圓O的外部,∴點(diǎn)P到圓心O的距離大于8,故選:A.【考點(diǎn)】本題主要考查點(diǎn)與圓的位置關(guān)系,關(guān)鍵是要牢記判斷點(diǎn)與圓的位置關(guān)系的方法.3、D【解析】【分析】連接OC、OA,利用圓周角定理得出∠AOC=60°,再利用垂徑定理得出AB即可.【詳解】連接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB為弦,點(diǎn)C為的中點(diǎn),∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故選D.【考點(diǎn)】此題考查圓周角定理,關(guān)鍵是利用圓周角定理得出∠AOC=60°.4、B【解析】【分析】扇形面積公式為:利用公式直接計(jì)算即可得到答案.【詳解】解:圓的半徑為扇形的圓心角為,故選:【考點(diǎn)】本題考查的是扇形的面積的計(jì)算,掌握扇形的面積的計(jì)算公式是解題的關(guān)鍵.5、D【解析】【分析】由圖可知,OA=10,OD=5.根據(jù)特殊角的三角函數(shù)值求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠E的度數(shù)即可.【詳解】解:由圖可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°即弦AB所對的圓周角的度數(shù)是60°或120°,故選D.【考點(diǎn)】本題考查了圓周角定理、圓內(nèi)接四邊形的對角互補(bǔ)、解直角三角形的應(yīng)用等,正確畫出圖形,熟練應(yīng)用相關(guān)知識是解題的關(guān)鍵.二、填空題1、3或5【解析】【分析】分類討論:當(dāng)點(diǎn)P在當(dāng)點(diǎn)P在射線OA時(shí)⊙P與CD相切,過P作PE⊥CD與E,根據(jù)切線的性質(zhì)得到PE=1cm,再利用含30°的直角三角形三邊的關(guān)系得到OP=2PE=2cm,則⊙P的圓心在直線AB上向右移動(dòng)了(8-2)cm后與CD相切,即可得到⊙P移動(dòng)所用的時(shí)間;當(dāng)點(diǎn)P在射線OB時(shí)⊙P與CD相切,過P作PE⊥CD與F,同前面一樣易得到此時(shí)⊙P移動(dòng)所用的時(shí)間.【詳解】當(dāng)點(diǎn)P在射線OA時(shí)⊙P與CD相切,如圖,過P作PE⊥CD與E,∴PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P的圓心在直線AB上向右移動(dòng)了(8-2)cm后與CD相切,∴⊙P移動(dòng)所用的時(shí)間==3(秒);當(dāng)點(diǎn)P在射線OB時(shí)⊙P與CD相切,如圖,過P作PE⊥CD與F,∴PF=1cm,∵∠AOC=∠DOB=30°,∴OP=2PF=2cm,∴⊙P的圓心在直線AB上向右移動(dòng)了(8+2)cm后與CD相切,∴⊙P移動(dòng)所用的時(shí)間==5(秒).故答案為3或5.【考點(diǎn)】本題考查直線與圓的位置關(guān)系:直線與有三種位置關(guān)系(相切、相交、相離).也考查了切線的性質(zhì).解題關(guān)鍵是熟練掌握以上性質(zhì).2、55°##55度【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠A+∠C=180°,再求出答案即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=180°-125°=55°,故答案為:55°.【考點(diǎn)】本題考查了圓內(nèi)接四邊形的性質(zhì)和圓周角定理,能熟記圓內(nèi)接四邊形的對角互補(bǔ)是解此題的關(guān)鍵.3、【解析】【分析】由AB、BC、AC長可推導(dǎo)出△ACB為等腰直角三角形,連接OC,得出∠BOC=90°,計(jì)算出OB的長就能利用弧長公式求出的長了.【詳解】∵每個(gè)小方格都是邊長為1的正方形,∴AB=2,AC=,BC=,∴AC2+BC2=AB2,∴△ACB為等腰直角三角形,∴∠A=∠B=45°,∴連接OC,則∠COB=90°,∵OB=∴的長為:=故答案為:.【考點(diǎn)】本題考查了弧長的計(jì)算以及圓周角定理,解題關(guān)鍵是利用三角形三邊長通過勾股定理逆定理得出△ACB為等腰直角三角形.4、105°.【解析】【分析】連接OD、OE,根據(jù)圓心角、弧、弦的關(guān)系定理求出∠AOD=35°,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理計(jì)算即可.【詳解】解:連接OD、OE,∵的度數(shù)為35°,∴∠AOD=35°,∵CD=CO,∴∠ODC=∠AOD=35°,∵OD=OE,∴∠ODC=∠E=35°,∴∠DOE=180°-∠ODC-∠E=180°-35°-35°=110°,∴∠AOE=∠DOE-∠AOD=110°-35°=75°,∴∠BOE=180°-∠AOE=180°-75°=105°,∴的度數(shù)是105°.故答案為105°.【考點(diǎn)】本題考查了圓心角、弧、弦的關(guān)系定理:在同圓和等圓中,相等的圓心角所對的弧相等,所對的弦也相等.5、【解析】【分析】先根據(jù)題目條件計(jì)算出OD,CD的長度,判斷為等邊三角形,之后表示出陰影面積的計(jì)算公式進(jìn)行計(jì)算即可.【詳解】在中,∴∵∴∵∴為等邊三角形∴故答案為:【考點(diǎn)】本題考查了陰影面積的計(jì)算,熟知不規(guī)則陰影面積的計(jì)算方法是解題的關(guān)鍵.三、解答題1、(1)見解析(2)見解析【解析】【分析】(1)兩個(gè)等弧同時(shí)加上一段弧后兩弧仍然相等;再通過同弧所對的弦相等證明即可;(2)根據(jù)同弧所對的圓周角相等,對頂角相等即可證明相似.(1)∵=∴=∴∴BD=AC(2)∵∠B=∠C;∠AEB=∠DEC∴△ABE∽△DCE【考點(diǎn)】本題考查等弧所對弦相等、所對圓周角相等,掌握這些是本題關(guān)鍵.2、(1)證明見解析;(2)35°【解析】【詳解】試題分析:(1)要證明CB∥PD,只要證明∠1=∠P;由∠1=∠C,∠P=∠C,可得∠1=∠P,即可解決問題;(2)在Rt△CEB中,求出∠C即可解決問題.試題解析:(1)如圖,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠CBE=55°,∴∠C=90°﹣55°=35°,∴∠P=∠C=35°.【考點(diǎn)】主要考查了圓周角定理、垂徑定理、直角三角形的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識.3、(1)證明見解析;(2)【解析】【詳解】分析:(1)根據(jù)平行線的性質(zhì)得出∠AEO=90°,再利用垂徑定理證明即可;(2)根據(jù)弧長公式解答即可.詳證明:(1)∵AB是⊙O的直徑,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴=.點(diǎn)睛:此題考查弧長公式,關(guān)鍵是根據(jù)弧長公式和垂徑定理解答.4、(1)45°;(2)8【解析】【詳解】試題分析:(1)連接OB,OC,由正方形的性質(zhì)知,是等腰直角三角形,根據(jù),由圓周角定理可以求出;(2)過點(diǎn)O作OE⊥BC于點(diǎn)E,由等腰直角三角形的性質(zhì)可知OE=BE,由垂徑定理可知BC=2BE,故可得出結(jié)論.試題解析:(1)連接OB,OC,∵四邊形ABCD為正方形,∴∠BOC=90°,∴∠P=∠BOC=45°;(2)過點(diǎn)O作OE⊥BC于點(diǎn)E,∵OB=OC,∠BOC=90°,∴∠OBE=45°,∴OE=BE,∵OE2+BE2=OB2,∴BE=,∴BC=2BE=2×.點(diǎn)睛:垂徑定理:垂直于弦的直徑平分弦并且平分弦所對的兩條弧.5、(1)9;(2)x或x=4;(3)x=0或x<2或2<x≤3【解析】【分析】(1)由題意可得Q運(yùn)動(dòng)3s達(dá)到B,即得BD=6,可知,從而a=AB?AD=9;(2)連接AC交BD于O,可得OA=AC=BD=3,根據(jù)△APQ的面積為6,即得PQ=4,當(dāng)P在Q下面時(shí),x=,當(dāng)P在Q上方時(shí),Q運(yùn)動(dòng)3s到B,x=4;(3)當(dāng)x=0時(shí),B與P重合,D與Q重合,此時(shí)以PQ為直徑的圓與△APQ的邊有且只有三個(gè)公共點(diǎn),同理t=6時(shí),以PQ為直徑的圓與△APQ的邊有且只有三個(gè)公共點(diǎn),當(dāng)Q運(yùn)動(dòng)到BD中點(diǎn)時(shí),以PQ為直徑的圓與AQ相切,與△APQ的邊有且只有三個(gè)公共點(diǎn),x=,當(dāng)P、Q重合時(shí),不構(gòu)成三角形和圓,此時(shí)x=2,當(dāng)Q運(yùn)動(dòng)到B,恰好P運(yùn)動(dòng)到BD中點(diǎn),x=3,以PQ為直徑的圓與△APQ的邊有且只有三個(gè)公共點(diǎn),即可得到答案.【詳解】解:(1)由題意可得:Q運(yùn)動(dòng)3s達(dá)到B,∴BD=3×2=6,∵四邊形ABCD是正方形,∴,∴a=AB?AD=9,故答案為:9;(2)連接AC交BD于O,如圖:∵四邊形ABCD是正方形,∴AC⊥BD,OA=AC=BD=3,∵△APQ的面積為6,∴PQ?OA=6,即PQ×3=6,∴PQ=4,而BP=x,DQ=2x,當(dāng)P在Q下面時(shí),6-x-2x=4,∴x=,當(dāng)P在Q上方時(shí),Q運(yùn)動(dòng)3s到B,此時(shí)PQ=3,∴x=4時(shí),PQ=4,則△APQ的面積為6;綜上所述,x=或x=4;(3)當(dāng)x=0時(shí),如圖:B與P重合,D與Q重合,此時(shí)以PQ為直徑的圓與△APQ的邊有且只有三個(gè)公共點(diǎn),同理,當(dāng)Q運(yùn)動(dòng)到B,P運(yùn)動(dòng)到D時(shí),以PQ為直徑的圓與△A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論