版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
中考數(shù)學(xué)總復(fù)習(xí)《圓》考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,⊙O中,弦AB⊥CD,垂足為E,F(xiàn)為的中點,連接AF、BF、AC,AF交CD于M,過F作FH⊥AC,垂足為G,以下結(jié)論:①;②HC=BF:③MF=FC:④,其中成立的個數(shù)是()A.1個 B.2個 C.3個 D.4個2、已知圓的半徑為扇形的圓心角為,則扇形的面積為(
)A. B. C. D.3、已知中,,,,點P為邊AB的中點,以點C為圓心,長度r為半徑畫圓,使得點A,P在⊙C內(nèi),點B在⊙C外,則半徑r的取值范圍是(
)A. B. C. D.4、如圖,點在上,,則(
)A. B. C. D.5、如圖,AB是的直徑,點B是弧CD的中點,AB交弦CD于E,且,,則(
)A.2 B.3 C.4 D.5第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、一個圓錐的底面半徑r=6,高h=8,則這個圓錐的側(cè)面積是_____.2、如圖,分別以等邊三角形的每個頂點為圓心、以邊長為半徑,在另兩個頂點間作一段圓弧,三段圓弧圍成的曲邊三角形稱為勒洛三角形.若等邊三角形的邊長為,則勒洛三角形的周長為_____.3、如圖,在⊙O中,的度數(shù)等于250°,半徑OC垂直于弦AB,垂足為D,那么AC的度數(shù)等于________度.4、如圖,AB是⊙O的直徑,點C,D,E都在⊙O上,∠1=55°,則∠2=_____°.5、如圖,拋物線的圖象與坐標(biāo)軸交于點、、,頂點為,以為直徑畫半圓交軸的正半軸于點,圓心為,是半圓上的一動點,連接,是的中點,當(dāng)沿半圓從點運動至點時,點運動的路徑長是__________.三、解答題(5小題,每小題10分,共計50分)1、在中,,,D為的中點,E,F(xiàn)分別為,上任意一點,連接,將線段繞點E順時針旋轉(zhuǎn)90°得到線段,連接,.(1)如圖1,點E與點C重合,且的延長線過點B,若點P為的中點,連接,求的長;(2)如圖2,的延長線交于點M,點N在上,且,求證:;(3)如圖3,F(xiàn)為線段上一動點,E為的中點,連接,H為直線上一動點,連接,將沿翻折至所在平面內(nèi),得到,連接,直接寫出線段的長度的最小值.2、(1)求圖(1)中陰影部分的面積(單位:厘米);(2)如圖(2)所示,已知大正方形的邊長為10厘米,小正方形的邊長為7厘米,求陰影部分面積.(結(jié)果保留)3、已知的半徑是.弦.求圓心到的距離;弦兩端在圓上滑動,且保持,的中點在運動過程中構(gòu)成什么圖形,請說明理由.4、如圖所示,AB是⊙O的直徑,點C為⊙O上一點,過點B作BD⊥CD,垂足為點D,連結(jié)BC.BC平分∠ABD.求證:CD為⊙O的切線.5、如圖,OC為⊙O的半徑,弦AB⊥OC于點D,OC=10,CD=4,求AB的長.-參考答案-一、單選題1、C【解析】【分析】根據(jù)弧,弦,圓心角之間的關(guān)系,圓周角定理以及三角形內(nèi)角和定理一一判斷即可.【詳解】解:∵F為的中點,∴,故①正確,∴∠FCM=∠FAC,∵∠FCG=∠ACM+∠FCM,∠AME=∠FMC=∠ACM+∠FAC,∴∠AME=∠FMC=∠FCG>∠FCM,∴FC>FM,故③錯誤,∵AB⊥CD,F(xiàn)H⊥AC,∴∠AEM=∠CGF=90°,∴∠CFH+∠FCG=90°,∠BAF+∠AME=90°,∴∠CFH=∠BAF,∴,∴HC=BF,故②正確,∵∠AGF=90°,∴∠CAF+∠AFH=90°,∴=180°,∴=180°,∴,故④正確,故選:C.【點評】本題考查圓心角,弧,弦之間的關(guān)系,三角形內(nèi)角和定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考選擇題中的壓軸題.2、B【解析】【分析】扇形面積公式為:利用公式直接計算即可得到答案.【詳解】解:圓的半徑為扇形的圓心角為,故選:【考點】本題考查的是扇形的面積的計算,掌握扇形的面積的計算公式是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)勾股定理,得AB=5,由P為AB的中點,得CP=,要使點A,P在⊙C內(nèi),r>3,r<4,從而確定r的取值范圍.【詳解】∵點A在⊙C內(nèi),∴r>3,∵點B在⊙C外,∴r<4,∴,故選:D.【考點】本題考查了點和圓的位置關(guān)系,利用數(shù)形結(jié)合思想是解題的關(guān)鍵.4、D【解析】【分析】先證明再利用等弧的性質(zhì)及圓周角定理可得答案.【詳解】解:點在上,,故選:【考點】本題考查的兩條弧,兩個圓心角,兩條弦之間的關(guān)系,圓周角定理,等弧的概念與性質(zhì),掌握同弧或等弧的概念與性質(zhì)是解題的關(guān)鍵.5、C【解析】【分析】是的直徑,點是弧的中點,從而可知,然后利用勾股定理即可求出的長度.【詳解】解:設(shè)半徑為,連接,是的直徑,點是弧的中點,由垂徑定理可知:,且點是的中點,,,由勾股定理可知:,由勾股定理可知:,解得:,故選:C.【考點】本題考查垂徑定理,解題的關(guān)鍵是正確理解垂徑定理以及勾股定理,本題屬于中等題型二、填空題1、60π【解析】【分析】利用圓錐的側(cè)面積公式:,求出圓錐的母線即可解決問題.【詳解】解:圓錐的母線,∴圓錐的側(cè)面積=π×10×6=60π,故答案為:60π.【考點】本題考查了圓錐的側(cè)面積,勾股定理等知識,解題的關(guān)鍵是記住圓錐的側(cè)面積公式.2、πa【解析】【分析】首先根據(jù)等邊三角形的性質(zhì)得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧長公式求出的長=的長=的長=,那么勒洛三角形的周長為【詳解】解:如圖.∵△ABC是等邊三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的長=的長=的長=,∴勒洛三角形的周長為故答案為:πa.【考點】本題考查了弧長公式,解題的關(guān)鍵是掌握(弧長為l,圓心角度數(shù)為n,圓的半徑為R),也考查了等邊三角形的性質(zhì).3、55【解析】【分析】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,再根據(jù)垂徑定理即可得解.【詳解】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,∵OC⊥AB,∴,∴∠AOC=∠AOB=55°.故答案為55.【考點】本題主要考查圓心角定理與垂徑定理,解此題的關(guān)鍵在于熟練掌握其知識點.4、35【解析】【分析】如圖(見解析),連接AD,先根據(jù)圓周角定理可得,從而可得,再根據(jù)圓周角定理可得,由此即可得.【詳解】如圖,連接AD∵AB是⊙O的直徑∴,即又由圓周角定理得:∵∴故答案為:35.【考點】本題考查了圓周角定理,熟記圓周角定理是解題關(guān)鍵.5、【解析】【分析】先求出A、B、E的坐標(biāo),然后求出半圓的直徑為4,由于E為定點,P是半圓AB上的動點,N為EP的中點,所以N的運動路經(jīng)為直徑為2的半圓,計算即可.【詳解】解:,∴點E的坐標(biāo)為(1,-2),令y=0,則,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E為定點,P是半圓AB上的動點,N為EP的中點,所以N的運動路經(jīng)為直徑為2的半圓,如圖,∴點運動的路徑長是.【考點】本題屬于二次函數(shù)和圓的綜合問題,考查了運動路徑的問題,熟練掌握二次函數(shù)和圓的基礎(chǔ)是解題的關(guān)鍵.三、解答題1、(1)2(2)見解析(3)【解析】【分析】(1)根據(jù)已知條件可得為的中點,證明,進而根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解;(2)過點作交的延長線于點,證明,,可得,進而根據(jù),即可得出結(jié)論,(3)根據(jù)(2)可知,當(dāng)點在線段上運動時,點在平行于的線段上運動,根據(jù)題意作出圖形,根據(jù)點到圓上的距離求最值即可求解.(1)如圖,連接將線段繞點E順時針旋轉(zhuǎn)90°得到線段,是等腰直角三角形,P為FG的中點,,,,,D為的中點,,,,,在中,;(2)如圖,過點作交的延長線于點,,,,,是等腰直角三角形,,,在與中,
,,,,又,,
,,,,,
又,,,,,,,;(3)由(2)可知,則當(dāng)點在線段上運動時,點在平行于的線段上運動,將沿翻折至所在平面內(nèi),得到,E為的中點,,,則點在以為圓心為半徑的圓上運動,當(dāng)三點共線時,最小,如圖,當(dāng)運動到與點重合時,取得最小值,.如圖,當(dāng)點運動到與點重合時,取得最小值,此時,則.綜上所述,的最小值為.【考點】本題考查了等腰三角形的性質(zhì)與判定,直角三角形斜邊上的中線,勾股定理,全等三角形的性質(zhì)與判定,軸對稱線的性質(zhì),點到圓上一點距離最值問題,正確的添加輔助線是解題的關(guān)鍵.2、(1)圖(1)中陰影部分的面積為4平方厘米;(2)陰影部分面積為平方厘米.【解析】【分析】(1)由圖可知,圖(1)中右邊正方形中的陰影部分的面積等于左邊正方形中的空白部分的面積,通過割補法可得陰影部分的面積為一個正方形的面積,計算即可得解;(2)陰影部分的面積=梯形ABCG的面積+扇形GCE的面積-三角形ABE的面積,據(jù)此解答即可.【詳解】解:(1)由圖可知,圖(1)中右邊正方形中的陰影部分的面積等于左邊正方形中的空白部分的面積,∴S陰影=2×2=4(平方厘米);(2)如圖,S陰影=S梯形ABCG+S扇形GCE-S△ABE==25π(平方厘米).【考點】本題考查了扇形的面積,梯形的面積,三角形的面積,正方形的面積等知識.解題的關(guān)鍵是把陰影部分分成常見的平面圖形的和與差,進一步求得面積.3、(1)3;(2)在運動過程中,點運動的軌跡是以為圓心,為半徑的圓【解析】【分析】(1)利用垂徑定理,然后根據(jù)勾股定理即可求得弦心距OD的長;(2)根據(jù)圓的定義即可確定.【詳解】解:連接,作于.就是圓心到弦的距離.在中,∵∴是弦的中點在中,,,圓心到弦的距離為.由知:是弦的中點中點在運動過程中始終保持∴據(jù)圓的定義,在運動過程中,點運動的軌跡是以為圓心,為半徑的圓.【考點】考查垂徑定理,作出輔助線,構(gòu)造直角三角形是解題的關(guān)鍵.4、證明見解析.【解析】【詳解】【分析】先利用BC平分∠ABD得到∠OBC=∠DBC,再證明OC∥BD,從而得到OC⊥CD,然后根據(jù)切線的判定定理得到結(jié)論.【詳解】∵BC平分∠ABD,∴∠OBC=∠DBC,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB=∠DBC,∴OC∥BD,∵BD⊥CD,∴OC⊥CD,∴CD為⊙O的切線.【考點】本題考查了切線的判定定理,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全員A證考試高分題庫含答案詳解(綜合題)
- 物流企業(yè)夜間安全運營管理方案
- 教師招聘考試題庫39名校編制含答案解析
- 安全員A證考試通關(guān)檢測卷含完整答案詳解(各地真題)
- 鐵路工程質(zhì)量管理技能考核試卷及答案
- 安全員A證考試通關(guān)考試題庫附答案詳解【預(yù)熱題】
- 2025接待客服試題及答案
- 蘭州2021-2022中學(xué)教師招聘考試真題及答案解析
- 江蘇教育出版社2025年旅游管理專業(yè)水平測試試題及答案
- 電商直播銷售團隊激勵方案
- 近五年甘肅中考物理試題及答案2025
- 兒科氧療護理實踐指南(2025年版)
- 康養(yǎng)中心規(guī)范化管理制度
- 科學(xué)規(guī)劃高三寒假:沖刺高考的最后蓄力
- 重金屬環(huán)境安全隱患排查評估整治技術(shù)指南(試行)
- 高空作業(yè)合同范本
- GB/T 5785-2025緊固件六角頭螺栓細牙
- 輸電線路巡視
- 中藥麥冬多糖的提取與免疫調(diào)節(jié)
- 產(chǎn)程中入量管理的研究進展
- 08J02 彩色壓型鋼板外墻保溫隔熱建筑構(gòu)造
評論
0/150
提交評論