版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
新疆喀什區(qū)第二中學7年級數學下冊第五章生活中的軸對稱定向測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列有關綠色、環(huán)保主題的四個標志中,是軸對稱圖形是()A. B. C. D.2、如圖,四邊形ABCD是軸對稱圖形,直線AC是它的對稱軸,若∠BAC=85°,∠B=25°,則∠BCD的大小為()A.150° B.140° C.130° D.120°3、下列圖形不是軸對稱圖形的是().A. B. C. D.4、下列四個圖標中,是軸對稱圖形的是()A. B.C. D.5、下列圖案中,屬于軸對稱圖形的是()A. B. C. D.6、下列消防圖標中,是軸對稱圖形的是()A. B. C. D.7、如圖,將一張長方形紙帶沿EF折疊,點C、D的對應點分別為C'、D'.若∠DEF=α,用含α的式子可以將∠C'FG表示為()A.2α B.90°+α C.180°﹣α D.180°﹣2α8、下列交通標志圖案是軸對稱圖形的是()A. B.C. D.9、在一些美術字中,有的漢字是軸對稱圖形.下面4個漢字中,可以看作是軸對稱圖形的是()A.吉 B.祥 C.如 D.意10、如圖,AD,BE,CF依次是ABC的高、中線和角平分線,下列表達式中錯誤的是()A.AE=CE B.∠ADC=90° C.∠CAD=∠CBE D.∠ACB=2∠ACF第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、平面直角坐標系中,點P(3,1)關于x軸對稱的點的坐標是______.2、內部有一點P,,點P關于的對稱點為M,點P關于的對稱點為N,若,則的周長為___________.3、如圖,將長方形紙片ABCD沿EF折疊后,點D、C分別落在點D1、C1的位置,ED1的延長線交BC于點G,若∠BGE=126°,則∠EFG的度數為______.4、如圖,在中,,,,將沿折疊,使得點恰好落在邊上的點處,折痕為,若點為上一動點,則的周長最小值為___________.5、成軸對稱的兩個圖形的主要性質是:(1)成軸對稱的兩個圖形是________﹔(2)如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對________的垂直平分線.6、如圖,和關于直線對稱,若,則圖中陰影部分的面積為___.7、如圖,正三角形網格中,已有兩個小正三角形被涂黑,再將圖中其余小正三角形涂黑一個,使整個被涂黑的圖案構成一個軸對稱圖形的方法有_________種.8、如圖,長方形紙片ABCD中AD∥BC,AB∥CD,∠A=90°,將紙片沿EF折疊,使頂點C、D分別落在點C'、D'處,C'E交AF于點G.若∠CEF=68°,則么∠GFD'=______°.9、如圖,點P為∠AOB內一點,分別作出P點關于OA、OB的對稱點P1,P2,連接P1P2交OA于M,交OB于N,P1P2=18,則△PMN的周長為______.10、如圖,把一張長方形紙片沿折疊,點D與點C分別落在點和點的位置上,與的交點為G,若,則為______度.三、解答題(6小題,每小題10分,共計60分)1、(閱讀與理解)折紙,常常能為證明一個命題提供思路和方法,例如,在△ABC中,AB>AC(如圖),怎樣證明∠C>∠B呢?(分析)把AC沿∠A的角平分線AD翻折,因為AB>AC,所以點C落在AB上的點C’處,即AC=AC’,據以上操作,易證明△ACD≌△AC’D,所以∠AC’D=∠C,又因為∠AC’D>∠B,所以∠C>∠B.(感悟與應用)(1)如圖(1),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,試判斷AC和AD、BC之間的數量關系,并說明理由;(2)如圖(2),在四邊形ABCD中,AC平分∠DAB,CD=CB.求證:∠B+∠D=180°.2、如圖,在△ABC中,∠ACB的平分線CD與外角∠EAC的平分線AF所在的直線交于點D.(1)求證:∠B=2∠D;(2)作點D關于AC所在直線的對稱點D′,連接AD′,CD′.①當AD′⊥AD時,求∠BAC的度數;②試判斷∠DAD′與∠BAC的數量關系,并說明理由.3、如圖,將△ABC三個角分別沿DE、HG、EF翻折,三個頂點均落在點O處.求∠1+∠2的度數.4、已知,在如圖所示的網格中建立平面直角坐標系后,△ABC三個頂點的坐標分別為A(1,1)、B(4,2)、C(2,4).(1)畫出△ABC關于y軸的對稱圖形△A1B1C1;(2)借助圖中的網格,請只用直尺(不含刻度)完成以下要求:(友情提醒:請別忘了標注字母?。僭诘谝幌笙迌日乙稽cP,使得P到AB、AC的距離相等,且PA=PB;②在x軸上找一點Q,使得△QAB的周長最小,則Q點的坐標(_____,_____).5、如圖,方格紙中每個小方格都是邊長為1的正方形,四邊形ABCD的頂點與點E都是格點.(1)作出四邊形ABCD關于直線AC對稱的四邊形AB′CD′;(2)求四邊形ABCD的面積;(3)若在直線AC上有一點P,使得P到D、E的距離之和最小,請作出點P的位置.6、如圖,三個頂點的坐標分別為,,(1)請畫出關于軸成軸對稱的圖形;(2)寫出、、的坐標;-參考答案-一、單選題1、B【分析】結合軸對稱圖形的概念進行求解.【詳解】解:A、不是軸對稱圖形,本選項不符合題意;B、是軸對稱圖形,本選項符合題意;C、不是軸對稱圖形,本選項不符合題意;D、不是軸對稱圖形,本選項不符合題意.故選:B.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.2、B【分析】根據三角形內角和的性質可求得,再根據對稱的性質可得,即可求解.【詳解】解:根據三角形內角和的性質可求得由軸對稱圖形的性質可得,∴故選:B【點睛】此題考查了三角形內角和的性質,軸對稱圖形的性質,解題的關鍵是掌握并利用相關基本性質進行求解.3、B【分析】根據軸對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,進行逐一判斷即可.【詳解】解:A、是軸對稱圖形,不符合題意;B、不是軸對稱圖形,符合題意;C、是軸對稱圖形,不符合題意;D、是軸對稱圖形,不符合題意;故選B.【點睛】本題主要考查了軸對稱圖形的識別,熟知軸對稱圖形的定義是解題的關鍵.4、C【分析】根據軸對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,進行求解即可【詳解】解:A、不是軸對稱圖形,故不符合題意;B、不是軸對稱圖形,故不符合題意;C、是軸對稱圖形,故符合題意;D、不是軸對稱圖形,故不符合題意;故選C.【點睛】本題主要考查了軸對稱圖形的識別,解題的關鍵在于能夠熟知軸對稱圖形的定義.5、B【詳解】解:A、不是軸對稱圖形,故本選項不符合題意;B、是軸對稱圖形,故本選項符合題意;C、不是軸對稱圖形,故本選項不符合題意;D、不是軸對稱圖形,故本選項不符合題意;故選:B【點睛】本題主要考查了軸對稱圖形的定義,熟練掌握若一個圖形沿著一條直線折疊后兩部分能完全重合,這樣的圖形就叫做軸對稱圖形,這條直線叫做對稱軸是解題的關鍵.6、B【詳解】解:A、不是軸對稱圖形,故本選項錯誤,不符合題意;B、是軸對稱圖形,故本選項正確,符合題意;C、不是軸對稱圖形,故本選項錯誤,不符合題意;D、不是軸對稱圖形,故本選項錯誤,不符合題意;故選:B【點睛】本題主要考查了軸對稱圖形的定義,熟練掌握若一個圖形沿著一條直線折疊后兩部分能完全重合,這樣的圖形就叫做軸對稱圖形,這條直線叫做對稱軸是解題的關鍵.7、D【分析】由平行線的性質得,,由折疊的性質得,計算即可得出答案.【詳解】∵四邊形ABCD是矩形,∴,∴,,∵長方形紙帶沿EF折疊,∴,∴.故選:D.【點睛】本題考查平行線的性質與折疊的性質,掌握平行線的性質以及折疊的性質是解題的關鍵.8、B【詳解】解:、不是軸對稱圖形,故本選項錯誤,不符合題意;、是軸對稱圖形,故本選項正確,符合題意;、不是軸對稱圖形,故本選項錯誤,不符合題意;、不是軸對稱圖形,故本選項錯誤,不符合題意.故選:B.【點睛】本題考查了軸對稱圖形,解題的關鍵是掌握軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.9、A【分析】根據軸對稱的定義去判斷即可.【詳解】∵吉是軸對稱圖形,∴A符合題意;∵祥不是軸對稱圖形,∴B不符合題意;∵如不是軸對稱圖形,∴C不符合題意;∵意不是軸對稱圖形,∴D不符合題意;故選A.【點睛】本題考查了軸對稱圖形,熟練掌握軸對稱圖形的定義即一個圖形沿著某條直線折疊,直線兩旁的圖形能完全重合,是解題的關鍵.10、C【分析】根據三角形的高、中線和角平分線的定義(1)三角形的角平分線定義:三角形的一個角的平分線與這個角的對邊相交,連接這個角的頂點和交點的線段叫做三角形的角平分線;(2)三角形的中線定義:在三角形中,連接一個頂點和它所對邊的中點的連線段叫做三角形的中線;(3)三角形的高定義:從三角形一個頂點向它的對邊(或對邊所在的直線)作垂線,頂點和垂足間的線段叫做三角形的高線,簡稱為高.求解即可.【詳解】解:A、BE是△ABC的中線,所以AE=CE,故本表達式正確;B、AD是△ABC的高,所以∠ADC=90,故本表達式正確;C、由三角形的高、中線和角平分線的定義無法得出∠CAD=∠CBE,故本表達式錯誤;D、CF是△ABC的角平分線,所以∠ACB=2∠ACF,故本表達式正確.故選:C.【點睛】本題考查了三角形的高、中線和角平分線的定義,是基礎題,熟記定義是解題的關鍵.二、填空題1、【分析】根據關于x軸的對稱點的坐標特征求解即可;【詳解】解:根據關于x軸的對稱點的特征,橫坐標不變,縱坐標變?yōu)橄喾磾悼傻茫狐c關于軸對稱的點的坐標是;故答案是.【點睛】本題主要考查了平面直角坐標系中點的對稱性,掌握關于x軸對稱的點的特征,準確計算是解題的關鍵.2、15【分析】根據軸對稱的性質可證∠MON=2∠AOB=60°;再利用OM=ON=OP,即可求出的周長.【詳解】解:根據題意可畫出下圖,∵OA垂直平分PM,OB垂直平分PN.∴∠MOA=∠AOP,∠NOB=∠BOP;OM=OP=ON=5cm.∴∠MON=2∠AOB=60°.∴為等邊三角形。△MON的周長=3×5=15.故答案為:15.【點睛】此題考查了軸對稱的性質及相關圖形的周長計算,根據軸對稱的性質得出∠MON=2∠AOB=60°是解題關鍵.3、63°【分析】由平行線的性質可得∠DEG=∠BGE=126°,再由折疊的性質可得∠DEF=63°,再由平行線的性質可得∠EFG=DEF=63°【詳解】解:∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEG=∠BGE=126°,∠DEF=∠EFG,由折疊的性質可得:∠DEF=∠DEG=63°,∴∠EFG=63°.故答案為:63°.【點睛】本題考查了平行線的性質以及折疊的性質,注意掌握折疊前后圖形的對應關系是解此題的關鍵.4、7【分析】根據折疊可知B和E關于AD對稱,由對稱的性質得出當F和D重合時,EF+FC的值最小,即此時的周長最小,最小值是EF+FC+EC=BD+CD+EC,先求出EC長,代入求出即可.【詳解】解:連接BF由題可知B和E關于AD對稱,AB=AE=4,∴BF=FE△CFE的周長為:EF+FC+EC=BF+CD+EC當F和D重合時,BF+CD=BC∵兩點之間線段最短∴此時BF+CD的值最小,即此時△CFE的周長最小,最小值是EF+FC+EC=BD+CD+EC=BC+EC,∵EC=AC-AE=6-4=2,∴的周長最小值為:BC+EC=5+2=7,故答案為:7.【點睛】本題考查了折疊性質,軸對稱?最短路線問題,關鍵是確定點F的位置.5、全等的對應點所連線段【分析】根據軸對稱的性質:成軸對稱的兩個圖形全等,如果兩個圖形成軸對稱,那么對稱軸是對應點的垂直平分線,進行求解即可.【詳解】解:(1)成軸對稱的兩個圖形是全等的;(2)如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線.故答案為:全等的,對應點所連線段.【點睛】本題主要考查了軸對稱圖形的性質,解題的關鍵在于能夠熟練掌握相關知識進行求解.6、3【分析】根據對稱性可得陰影部分的面積為面積的一半,即可求解.【詳解】解:由和關于直線對稱可得,,陰影部分的面積為面積的一半即故答案為3.【點睛】此題考查了軸對稱的性質,熟練掌握軸對稱的性質是解題的關鍵.7、3【分析】根據軸對稱圖形的定義:如果一個圖形沿一條直線對折,直線兩旁的部分能互相重合,那么這個圖形叫做軸對稱圖形,做答即可.【詳解】解:如圖所示,根據軸對稱圖形的定義可知,選擇一個小正三角形涂黑,使整個被涂黑的圖案構成一個軸對稱圖形,選擇的位置可以有以下3種可能:故答案為:3.【點睛】本題考查軸對稱圖形,解題的關鍵是熟知軸對稱的概念.8、44【分析】根據平行線的性質和翻折不變性解答.【詳解】解:∵ADBC,∴∠DFE=180°?∠CEF=180°?68°=112°,∴∠D′FE=112°,∠GFE=180°?112°=68°,∴∠GFD′=112°?68°=44°.故答案為:44.【點睛】本題考查了平行線的性質和翻折不變性,注意觀察圖形.9、18【分析】因為P,P1關于OA對稱,P,P2關于OB對稱,推出PN=NP2,MP=MP1,推出△PMN的周長=PN+MN+PM=NP2+MN+NP1=P1P2即可解決問題.【詳解】解:∵P,P1關于OA對稱,P,P2關于OB對稱,∴PN=NP2,MP=MP1,∴△PMN的周長=PN+MN+PM=NP2+MN+MP1=P1P2=18,∴△PMN的周長為18.故答案為:18.【點睛】本題考查了軸對稱的性質,三角形的周長等知識,解題的關鍵是熟練掌握軸對稱的性質,學會用轉化的思想思考問題,屬于中考常考題型.10、【分析】由折疊的性質可以得,從而求出,再由平行線的性質得到.【詳解】解:由折疊的性質可知,,∵∠EFG=55°,∴,∴,∵四邊形ABCD是長方形∴AD∥BC,DE∥,∴,故答案為:70.【點睛】本題主要考查了折疊的性質,平行線的性質,解題的關鍵在于能夠熟練掌握相關知識進行求解.三、解答題1、(1)AC+AD=BC;(2)證明見解答過程;【分析】(1)把AC沿∠ACB的角平分線CD翻折,點A落在BC上的點A′處,連接A′D,根據直角三角形的性質求出∠A,根據三角形的外角性質得到∠A′DB=∠B,根據等腰三角形的判定定理得到A′D=A′B,結合圖形計算,證明結論;(2)將AD沿AC翻折,使D落在AB上的D′處,連接CD′,根據全等三角形的性質得到CD=CD′=BC,∠D=∠AD′C,進而證明結論;【詳解】(1)解:AC+AD=BC,理由如下:如圖,把AC沿∠ACB的角平分線CD翻折,點A落在BC上的點A′處,連接A′D,∵∠ACB=90°,∠B=30°,∴∠A=90°-∠B=60°,由折疊的性質可知,CA′=CA,A′D=AD,∠CA′D=∠A=60°,∵∠B=30°,∴∠A′DB=∠CA′D-∠B=30°,∴∠A′DB=∠B,∴A′D=A′B,∴AD=A′B,∴BC=CA′+A′B=AC+AD;(2)證明:如圖,將AD沿AC翻折,使D落在AB上的D′處,連接CD′,則△ADC≌△AD′C,∴CD=CD′=BC,∠D=∠AD′C,∴∠B=∠BD′C,∵∠BD′C+∠AD′C=180°,∴∠B+∠D=180°.【點睛】本題考查的是翻折變換的性質、等腰三角形的性質,掌握翻折變換的性質是解題的關鍵.2、(1)見解析;(2)①90°;②∠BAC+∠DAD′=180°,理由解析.【分析】(1)根據角平分線的定義,可得,,再由三角形的外角性質,即可求證;(2)①由對稱的性質可知∠DAC=∠D′AC,根據垂直的定義,可得∠DAD′=90°,從而得到,進而得到∠FAE=∠CAF=45°,即可求解;②設∠DAD′=α,同①可得,,從而得到.進而得到∠BAC=180°-α,即可求解.【詳解】(1)證明:∵CD平分∠ACB,∴.∵AF是外角∠EAC的平分線,∴.又∵∠CAF=∠D+∠ACD,∠CAE=∠B+∠ACB,∴∠D=∠CAF-∠ACD==.∴∠B=2∠D;(2)由對稱的性質可知∠DAC=∠D′AC,①當AD′⊥AD時,∠DAD′=90°,∴.∴∠CAF=180°-∠DAC=45°.∴∠FAE=∠CAF=45°.∴∠BAC=180°-∠FAE-∠CAF=90°;②∠BAC+∠DAD′=180°,理由如下:設∠DAD′=α,同①可得,,∴.∴∠CAE=2∠CAF=α,∴∠BAC=180°-∠CAE=180°-α.∴∠BAC+∠DAD′=180°.【點睛】本題主要考查了角平分線的定義,三角形的外角性質,軸對稱圖形,熟練掌握相關知識點是解題的關鍵.3、180°【分析】根據翻折變換前后對應角不變,故∠B=∠HOG,∠A=∠DOE,∠C=∠EOF,∠1+∠2+∠HOG+∠EOF+∠DOE=360°,進而求出∠1+∠2的度數.【詳解】解:∵將△ABC三個角分別沿DE、HG、EF翻折,三個頂點均落在點O處,∴∠B=∠HOG,∠A=∠DOE,∠C=∠EOF,∵∠1+∠2+∠HOG+∠EOF+∠DOE=360°,∵∠HOG+∠EOF+∠DOE=∠A+∠B+∠C=180°,∴∠1+∠2=360°﹣180°=180°.【點睛】此題主要考查了翻折變換的性質和三角形的內角和定理,根據已知得出∠HOG+∠EOF+∠DOE=∠A+∠B+∠C=180°是解題關鍵.4、(1)見詳解;(2)①見詳解;②2,0.【分析】(1)根據題意畫一個圖形的軸對稱圖形時,也是先從確定一些特殊的對稱點開始,連接這些對稱點,就得到原
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年三亞城市職業(yè)學院馬克思主義基本原理概論期末考試模擬題附答案
- 2025云南省臨滄市社會工作聯(lián)合會招聘實習生(2人)備考題庫附答案
- 水聲壓電器件制造工安全風險考核試卷含答案
- 腌臘發(fā)酵制品加工工沖突管理模擬考核試卷含答案
- 套筒卷制工班組協(xié)作考核試卷含答案
- 硅樹脂生產工崗前安全意識考核試卷含答案
- 白酒制曲工安全實操水平考核試卷含答案
- 2024年淮南聯(lián)合大學馬克思主義基本原理概論期末考試題附答案
- 2024年洛陽市直遴選筆試真題匯編附答案
- 2024年遼寧科技大學輔導員考試筆試真題匯編附答案
- 復方蒲公英注射液在銀屑病中的應用研究
- 住培中醫(yī)病例討論-面癱
- 設備安裝施工方案范本
- 衛(wèi)生院副院長先進事跡材料
- 復發(fā)性抑郁癥個案查房課件
- 網絡直播創(chuàng)業(yè)計劃書
- 人類學概論(第四版)課件 第1、2章 人類學要義第一節(jié)何為人類學、人類學的理論發(fā)展過程
- 《功能性食品學》第七章-輔助改善記憶的功能性食品
- 幕墻工程竣工驗收報告2-2
- 1、工程竣工決算財務審計服務項目投標技術方案
- 改進維持性血液透析患者貧血狀況PDCA
評論
0/150
提交評論