綜合解析人教版8年級數學上冊《軸對稱》同步訓練試卷(含答案詳解)_第1頁
綜合解析人教版8年級數學上冊《軸對稱》同步訓練試卷(含答案詳解)_第2頁
綜合解析人教版8年級數學上冊《軸對稱》同步訓練試卷(含答案詳解)_第3頁
綜合解析人教版8年級數學上冊《軸對稱》同步訓練試卷(含答案詳解)_第4頁
綜合解析人教版8年級數學上冊《軸對稱》同步訓練試卷(含答案詳解)_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數學上冊《軸對稱》同步訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、以下四個標志,每個標志都有圖案和文字說明,其中的圖案是軸對稱圖形是(

)A. B.C. D.2、如果點與關于軸對稱,則,的值分別為(

)A., B.,C., D.,3、如圖,在矩形中,,,動點滿足,則點到、兩點距離之和的最小值為(

)A. B. C. D.4、下列圖案是幾家銀行的標志,其中是軸對稱圖形的有()A.1個 B.2個 C.3個 D.4個5、若點A(﹣4,m﹣3),B(2n,1)關于x軸對稱,則(

)A.m=2,n=0 B.m=2,n=﹣2 C.m=4,n=2 D.m=4,n=﹣2第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在△ABC中,AB=AC,外角∠ACD=110°,則∠A=__________.2、如圖,在△ABC中,DE是BC的垂直平分線,垂足為E,交AC于點D,若AB=6,AC=9,則△ABD的周長是__.3、如圖,在△ABC中,∠B=30°,∠C=50°,通過觀察尺規(guī)作圖的痕跡,∠DAE的度數是

_____.4、如圖,在中,,以為邊,作,滿足,為上一點,連接,,連接.下列結論中正確的是________(填序號)①;②;③若,則;④.5、已知∠AOB=60°,OC是∠AOB的平分線,點D為OC上一點,過D作直線DE⊥OA,垂足為點E,且直線DE交OB于點F,如圖所示.若DE=2,則DF=_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,是邊長為1的等邊三角形,,,點,分別在,上,且,求的周長.2、在三角形紙片ABC中,,,,點E在AC上,.將三角形紙片ABC按圖中方式折疊,使點A的對應點落在AB的延長線上,折痕為ED,交BC于點F.(1)求的度數;(2)求BF的長度.3、如圖,是邊長為3的等邊三角形,是等腰三角形,且,以為頂點作一個角,使其兩邊分別交于點,交于點,連接,求的周長.4、如圖所示的四個圖形中,從幾何圖形變換的角度考慮,哪一個與其他三個不同?請指出這個圖形,并簡述你的理由.

5、如圖,在四邊形ABCD中,∠B=∠D=90°,∠C=60°,AD=1,BC=2,求AB、CD的長.-參考答案-一、單選題1、D【解析】【分析】根據軸對稱圖形的定義判斷即可【詳解】∵A,B,C都不是軸對稱圖形,∴都不符合題意;D是軸對稱圖形,符合題意,故選D.【考點】本題考查了軸對稱圖形的定義,準確理解軸對稱圖形的定義是解題的關鍵.2、A【解析】【分析】根據關于y軸對稱點的坐標特點:橫坐標互為相反數,縱坐標不變.即點P(x,y)關于y軸的對稱點P′的坐標是(-x,y),進而得出答案.【詳解】解:∵點P(-m,3)與點Q(-5,n)關于y軸對稱,∴m=-5,n=3,故選:A.【考點】此題主要考查了關于y軸對稱點的性質,正確記憶關于坐標軸對稱點的性質是解題關鍵.3、D【解析】【分析】由,可得△PAB的AB邊上的高h=2,表明點P在平行于AB的直線EF上運動,且兩平行線間的距離為2;延長FC到G,使FC=CG,連接AG交EF于點H,則點P與H重合時,PA+PB最小,在Rt△GBA中,由勾股定理即可求得AG的長,從而求得PA+PB的最小值.【詳解】解:設△PAB的AB邊上的高為h∵∴∴h=2表明點P在平行于AB的直線EF上運動,且兩平行線間的距離為2,如圖所示∴BF=2∵四邊形ABCD為矩形∴BC=AD=3,∠ABC=90゜∴FC=BC-BF=3-2=1延長FC到G,使CG=FC=1,連接AG交EF于點H∴BF=FG=2∵EF∥AB∴∠EFG=∠ABC=90゜∴EF是線段BG的垂直平分線∴PG=PB∵PA+PB=PA+PG≥AG∴當點P與點H重合時,PA+PB取得最小值AG在Rt△GBA中,AB=5,BG=2BF=4,由勾股定理得:即PA+PB的最小值為故選:D.【考點】本題是求兩條線段和的最小值問題,考查了矩形的性質,勾股定理,線段垂直平分線的性質、兩點之間線段最短等知識,難點在于確定點P運動的路徑,路徑確定后就是典型的將軍飲馬問題.4、C【解析】【分析】根據軸對稱圖形的概念“如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠相互重合的圖形”可直接進行排除選項.【詳解】解:都是軸對稱圖形,而不是軸對稱圖形,所以是軸對稱圖形的有3個;故選C.【考點】本題主要考查軸對稱圖形的識別,熟練掌握軸對稱圖形的概念是解題的關鍵.5、B【解析】【分析】根據點(x,y)關于x軸對稱的點的坐標為(x,﹣y)即可求得m、n值.【詳解】解:∵點A(﹣4,m﹣3),B(2n,1)關于x軸對稱,∴﹣4=2n,m﹣3=﹣1,解得:n=﹣2,m=2,故選:B.【考點】本題考查了坐標與圖形變換-軸對稱、解一元一次方程,熟練掌握關于坐標軸對稱的的點的坐標特征是解答的關鍵.二、填空題1、40°【解析】【分析】由∠ACD=110,可知∠ACB=70;由AB=AC,可知∠B=∠ACB=70;利用三角形外角的性質可求出∠A.【詳解】解:∵∠ACD=110,∴∠ACB=180-110=70;∵AB=AC,∴∠B=∠ACB=70;∴∠A=∠ACD-∠B=110-70=40.故答案為40.【考點】本題考查了等邊對等角和三角形外角的性質.2、15【解析】【分析】根據線段的垂直平分線的性質得到DB=DC,根據三角形的周長公式計算即可.【詳解】解:∵DE是BC的垂直平分線,∴DB=DC,∴△ABD的周長=AB+AD+BD=AB+AD+DC=AB+AC=15,故答案為15.【考點】本題考查的是線段的垂直平分線的性質,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.3、35°【解析】【分析】由線段垂直平分線的性質和等腰三角形的性質求得∠BAD=30°,結合三角形內角和定理求出∠CAD,根據角平分線的定義即可求出∠DAE的度數.【詳解】解:∵DF垂直平分線段AB,∴DA=DB,∴∠BAD=∠B=30°,∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=180°-30°-50°=100°,∴∠CAD=∠BAC-∠BAD=100°-30°=70°,∵AE平分∠CAD,∴∠DAE=∠CAD=×70°=35°,故答案為:35°.【考點】本題考查作圖-基本作圖,三角形內角和定理等知識,解題的關鍵是讀懂圖象信息,熟練掌握線段垂直平分線和角平分線的作法.4、②③④【解析】【分析】通過延長EB至E',使BE=BE',連接,構造出全等三角形,再利用全等三角形的性質依次分析,可得出正確的結論是②③④.【詳解】解:如圖,延長EB至E',使BE=BE',連接;∵∠ABC=90°,∴AB垂直平分EE',∴AE=AE',∴∠1=∠2,∠3=∠5,∵∠1=,∴∠E'AE=2∠1=∠CAD,∴∠E'AC=∠EAD,

又∵AD=AC,∴,∴∠5=∠4,∠ADE=∠ACB(即②正確),∴∠3=∠4;當∠6=∠1時,∠4+∠6=∠3+∠1=90°,此時,∠AME=180°-(∠4+∠6)=90°,當∠6≠∠1時,∠4+∠6≠∠3+∠1,∠4+∠6≠90°,此時,∠AME≠90°,∴①不正確;若CD∥AB,則∠7=∠BAC,∵AD=AC,∴∠7=∠ADC,∵∠CAD+∠7+∠ADC=180°,∴,

∴∠1+∠7=90°,∴∠2+∠7=90°,∴∠2+∠BAC=90°,即∠E'AC=90°,由,∴∠EAD=∠CAE'=90°,E'C=DE,∴AE⊥AD(即③正確),DE=E'B+BE+CE=2BE+CE(即④正確);故答案為:②③④.【考點】本題綜合考查了線段的垂直平分線的判定與性質、全等三角形的判定與性質、等腰三角形的性質、平行線的性質等內容;要求學生能夠根據已知條件通過作輔助線構造出全等三角形以及能正確運用全等三角形的性質得到角或線段之間的關系,能進行不同的邊或角之間的轉換,考查了學生的綜合分析和數形結合的能力.5、4.【解析】【分析】過點D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對的直角邊等于斜邊的一半可求出DF的長,此題得解.【詳解】過點D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案為4.【考點】本題考查了角平分線的性質、三角形內角和定理以及含30度角的直角三角形,利用角平分線的性質及30°角所對的直角邊等于斜邊的一半,求出DF的長是解題的關鍵.三、解答題1、2【解析】【分析】延長至點,使,連接,證明推出,,進而得到,從而證明,推出EF=CP,由此求出的周長=AB+AC得到答案.【詳解】解:如圖,延長至點,使,連接.∵是等邊三角形,∴.∵,,∴,∴,∴.在和中,,∴,∴,.∵,,∴,∴,∴.在和中,,∴,∴,∴,∴的周長.【考點】此題考查全等三角形的判定及性質,等邊三角形的性質,等腰三角形等邊對等角的性質,題中輔助線的引出是解題的關鍵.2、(1);(2)1.【解析】【分析】(1)先根據折疊的性質可得,再根據鄰補角的定義可得,然后根據直角三角形的性質可得,最后根據對頂角相等即可得;(2)先根據線段的和差可得,再根據等邊三角形的判定與性質可得,然后根據折疊的性質可得,從而可得,最后利用直角三角形的性質即可得.【詳解】(1)由折疊的性質得:,,點落在AB的延長線上,,,由對頂角相等得:;(2),,在中,,,,由(1)知,,是等邊三角形,,由折疊的性質得:,,,則在中,.【考點】本題考查了折疊的性質、等邊三角形的判定與性質、直角三角形的性質等知識點,熟練掌握折疊的性質是解題關鍵.3、的周長為6.【解析】【分析】要求△AMN的周長,根據題目已知條件無法求出三條邊的長,只能把三條邊長用其它已知邊長來表示,所以需要作輔助線,延長AB至F,使BF=CN,連接DF,通過證明△BDF≌△CDN,及△DMN≌△DMF,從而得出MN=MF,△AMN的周長等于AB+AC的長.【詳解】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是邊長為3的等邊三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延長AB至F,使BF=CN,連接DF,在Rt△BDF和Rt△CND中,BF=CN,DB=DC∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM為公共邊∴△DMN≌△DMF,∴MN=MF∴△AMN的周長是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.【考點】此題主要利用等邊三角形和等腰三角形的性質來證明三角形全等,構造另一個三角形是解題的關鍵.4、圖(2),僅它不是軸對稱圖形【解析】【詳解】試題分析:觀察圖形發(fā)現(xiàn)(1)(3)(4)都是軸對稱圖形,而(2)不是軸對稱圖形,由此即可得出結論.試題解析:解:(1)(3)(4)都是軸對稱圖形,而(2)不是軸對稱圖形.故從幾何圖形變換的角度考慮,圖(2)與其它三個不同.5、AB=2-2,CD=4-.【解析】【分析】此題為幾何題,看題目只是一個四邊形,要求兩條未知邊,那肯定要添輔助線.過點D作DH⊥BA延長線于H,作DM⊥BC于M.構建矩形HBMD.利用矩形的性質和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論