中考數(shù)學(xué)總復(fù)習(xí)《 圓》高頻難、易錯點(diǎn)題附參考答案詳解【突破訓(xùn)練】_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高頻難、易錯點(diǎn)題附參考答案詳解【突破訓(xùn)練】_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高頻難、易錯點(diǎn)題附參考答案詳解【突破訓(xùn)練】_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高頻難、易錯點(diǎn)題附參考答案詳解【突破訓(xùn)練】_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高頻難、易錯點(diǎn)題附參考答案詳解【突破訓(xùn)練】_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《圓》高頻難、易錯點(diǎn)題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、已知一個扇形的弧長為,圓心角是,則它的半徑長為()A.6cm B.5cm C.4cm D.3cm2、如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個圓錐的底面和側(cè)面,則圓錐的表面積為(

)A. B. C. D.3、如圖,已知在中,是直徑,,則下列結(jié)論不一定成立的是(

)A. B.C. D.到、的距離相等4、如圖,是⊙的直徑,點(diǎn)C為圓上一點(diǎn),的平分線交于點(diǎn)D,,則⊙的直徑為(

)A. B. C.1 D.25、如圖,已知中,,,,如果以點(diǎn)為圓心的圓與斜邊有公共點(diǎn),那么⊙的半徑的取值范圍是(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在矩形中,是邊上一點(diǎn),連接,將矩形沿翻折,使點(diǎn)落在邊上點(diǎn)處,連接.在上取點(diǎn),以點(diǎn)為圓心,長為半徑作⊙與相切于點(diǎn).若,,給出下列結(jié)論:①是的中點(diǎn);②⊙的半徑是2;③;④.其中正確的是________.(填序號)2、如圖,一個底面半徑為3的圓錐,母線,D為的中點(diǎn),一只螞蟻從點(diǎn)A出發(fā),沿著圓錐的側(cè)面爬行到D,則螞蟻爬行的最短路程為______.3、如圖,在一邊長為的正六邊形中,分別以點(diǎn)A,D為圓心,長為半徑,作扇形,扇形,則圖中陰影部分的面積為___________.(結(jié)果保留)4、如圖,矩形ABCD的對角線AC,BD交于點(diǎn)O,分別以點(diǎn)A,C為圓心,AO長為半徑畫弧,分別交AB,CD于點(diǎn)E,F(xiàn).若BD=4,∠CAB=36°,則圖中陰影部分的面積為___________.(結(jié)果保留π).5、圓錐形冰淇淋的母線長是12cm,側(cè)面積是60πcm2,則底面圓的半徑長等于_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,一根長的繩子,一端拴在柱子上,另一端拴著一只羊(羊只能在草地上活動),請畫出羊的活動區(qū)域.2、如圖,已知AB是⊙O的直徑,C,D是⊙O上的點(diǎn),OC∥BD,交AD于點(diǎn)E,連結(jié)BC.(1)求證:AE=ED;(2)若AB=10,∠CBD=36°,求的長.3、(1)如圖①,在△ABC中,,AB=4,AC=3,若AD平分∠BAC交于點(diǎn),那么點(diǎn)到的距離為.(2)如圖②,四邊形內(nèi)接于,為直徑,點(diǎn)B是半圓的三等分點(diǎn)(弧?。?,連接,若平分,且,求四邊形的面積.(3)如圖③,為把“十四運(yùn)”辦成一屆精彩圓滿的體育盛會很多公園都在進(jìn)行花卉裝扮,其中一塊圓形場地圓O,設(shè)計人員準(zhǔn)備在內(nèi)接四邊形ABCD區(qū)域內(nèi)進(jìn)行花卉圖案設(shè)計,其余部分方便游客參觀,按照設(shè)計要求,四邊形ABCD滿足∠ABC=60°,AB=AD,且AD+DC=10(其中),為讓游客有更好的觀體驗(yàn),四邊形ABCD花卉的區(qū)域面積越大越好,那么是否存在面積最大的四邊形ABCD?若存在,求出這個最大值,不存在請說明理由.4、如圖,正五邊形內(nèi)接于,為上的一點(diǎn)(點(diǎn)不與點(diǎn)重合),求的余角的度數(shù).5、如圖所示,,.(1)已知,求以為直徑的半圓面積及扇形的面積;(2)若的長度未知,已知陰影甲的面積為16平方厘米,能否求陰影乙的面積?若能,請直接寫出結(jié)果;若不能,請說明理由.-參考答案-一、單選題1、A【解析】【分析】設(shè)扇形半徑為rcm,根據(jù)扇形弧長公式列方程計算即可.【詳解】設(shè)扇形半徑為rcm,則=5π,解得r=6cm.故選A.【考點(diǎn)】本題主要考查扇形弧長公式.2、B【解析】【分析】設(shè)圓錐的底面的半徑為rcm,則DE=2rcm,利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長得到2πr,解方程求出r,然后求得直徑即可.【詳解】解:設(shè)圓錐的底面的半徑為rcm,則AE=BF=6-2r根據(jù)題意得2πr,解得r=1,側(cè)面積=,底面積=所以圓錐的表面積=,故選:B.【考點(diǎn)】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計算.解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應(yīng)關(guān)系:(1)圓錐的母線長等于側(cè)面展開圖的扇形半徑;(2)圓錐的底面周長等于側(cè)面展開圖的扇形弧長.正確對這兩個關(guān)系的記憶是解題的關(guān)鍵.3、A【解析】【分析】根據(jù)圓心角、弧、弦之間的關(guān)系即可得出答案.【詳解】在中,弦弦,則其所對圓心角相等,即,所對優(yōu)弧和劣弧分別相等,所以有,故B項(xiàng)和C項(xiàng)結(jié)論正確,∵,AO=DO=BO=CO∴(SSS)可得出點(diǎn)到弦,的距離相等,故D項(xiàng)結(jié)論正確;而由題意不能推出,故A項(xiàng)結(jié)論錯誤.故選:A【考點(diǎn)】此題主要考查圓的基本性質(zhì),解題的關(guān)鍵是熟知圓心角、弧、弦之間的關(guān)系.4、B【解析】【分析】過D作DE⊥AB垂足為E,先利用圓周角的性質(zhì)和角平分線的性質(zhì)得到DE=DC=1,再說明Rt△DEB≌Rt△DCB得到BE=BC,然后再利用勾股定理求得AE,設(shè)BE=BC=x,AB=AE+BE=x+,最后根據(jù)勾股定理列式求出x,進(jìn)而求得AB.【詳解】解:如圖:過D作DE⊥AB,垂足為E∵AB是直徑∴∠ACB=90°∵∠ABC的角平分線BD∴DE=DC=1在Rt△DEB和Rt△DCB中DE=DC、BD=BD∴Rt△DEB≌Rt△DCB(HL)∴BE=BC在Rt△ADE中,AD=AC-DC=3-1=2AE=設(shè)BE=BC=x,AB=AE+BE=x+在Rt△ABC中,AB2=AC2+BC2則(x+)2=32+x2,解得x=∴AB=+=2故填:2.【考點(diǎn)】本題主要考查了圓周角定理、角平分線的性質(zhì)以及勾股定理等知識點(diǎn),靈活應(yīng)用相關(guān)知識成為解答本題的關(guān)鍵.5、C【解析】【分析】作CD⊥AB于D,根據(jù)勾股定理計算出AB=13,再利用面積法計算出然后根據(jù)直線與圓的位置關(guān)系得到當(dāng)時,以C為圓心、r為半徑作的圓與斜邊AB有公共點(diǎn).【詳解】解:作CD⊥AB于D,如圖,∵∠C=90°,AC=3,BC=4,∴∴∴以C為圓心、r為半徑作的圓與斜邊AB有公共點(diǎn)時,r的取值范圍為故選:C【考點(diǎn)】本題考查了直線與圓的位置關(guān)系:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d:直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.二、填空題1、①②④.【解析】【詳解】解:①∵AF是AB翻折而來,∴AF=AB=6.∵AD=BC=,∴DF==3,∴F是CD中點(diǎn);∴①正確;②連接OP,∵⊙O與AD相切于點(diǎn)P,∴OP⊥AD.∵AD⊥DC,∴OP∥CD,∴,設(shè)OP=OF=x,則,解得:x=2,∴②正確;③∵Rt△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF.∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③錯誤;④連接OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG為等邊△.同理△OPG為等邊△,∴∠POG=∠FOG=60°,OH=OG=,S扇形OPG=S扇形OGF,∴S陰影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG)=S矩形OPDH﹣S△OFG==,∴④正確;故答案為①②④.2、【解析】【分析】先畫出圓錐側(cè)面展開圖(見解析),再利用弧長公式求出圓心角的度數(shù),然后利用等邊三角形的判定與性質(zhì)、勾股定理可得,最后根據(jù)兩點(diǎn)之間線段最短即可得.【詳解】畫出圓錐側(cè)面展開圖如下:如圖,連接AB、AD,設(shè)圓錐側(cè)面展開圖的圓心角的度數(shù)為,因?yàn)閳A錐側(cè)面展開圖是一個扇形,扇形的弧長等于底面圓的周長,扇形的半徑等于母線長,所以,解得,則,又,是等邊三角形,點(diǎn)D是BC的中點(diǎn),,,在中,,由兩點(diǎn)之間線段最短可知,螞蟻爬行的最短路程為,故答案為:.【考點(diǎn)】本題考查了圓錐側(cè)面展開圖、弧長公式、等邊三角形的判定與性質(zhì)等知識點(diǎn),熟練掌握圓錐側(cè)面展開圖是解題關(guān)鍵.3、【解析】【分析】先利用正多邊形內(nèi)角和公式求得每個內(nèi)角,再利用扇形面積公式求出扇形ABF、扇形DCE的面積,即可得出結(jié)果.【詳解】由正多邊形每個內(nèi)角公式可得該正六邊形的每一個內(nèi)角;∵,;則陰影部分面積為:.【考點(diǎn)】本題考查了正多邊形和圓、扇形面積計算等知識;掌握正多邊形內(nèi)角的計算公式和扇形面積公式是解題的關(guān)鍵.4、【解析】【分析】利用矩形的性質(zhì)求得OA=OC=OB=OD=2,再利用扇形的面積公式求解即可.【詳解】解:∵矩形ABCD的對角線AC,BD交于點(diǎn)O,且BD=4,∴AC=BD=4,OA=OC=OB=OD=2,∴,故答案為:.【考點(diǎn)】本題考查了矩形的性質(zhì),扇形的面積等知識,正確的識別圖形是解題的關(guān)鍵.5、5cm.【解析】【分析】設(shè)圓錐的底面圓的半徑長為rcm,根據(jù)圓錐的側(cè)面積公式計算即可.【詳解】解:設(shè)圓錐的底面圓的半徑長為rcm.則×2π?r×12=60π,解得:r=5(cm),故答案為5cm.【考點(diǎn)】圓錐的側(cè)面積公式是本題的考點(diǎn),牢記其公式是解題的關(guān)鍵.三、解答題1、見解析【解析】【分析】根據(jù)題意畫出兩個扇形即可得到羊的活動區(qū)域.【詳解】解:如圖,以點(diǎn)O為圓心,5m長的繩子為半徑畫弧交草地左邊界于點(diǎn)A,交OD的延長線于點(diǎn)B,再以D為圓心,DB長為半徑畫弧交草地的右邊界于點(diǎn)C,則扇形AOB和扇形BDC部分即為羊的活動區(qū)域.【考點(diǎn)】本題考查了作圖﹣應(yīng)用與設(shè)計作圖、扇形面積,根據(jù)題意畫扇形是解決本題的關(guān)鍵.2、(1)證明見解析;(2)【解析】【詳解】分析:(1)根據(jù)平行線的性質(zhì)得出∠AEO=90°,再利用垂徑定理證明即可;(2)根據(jù)弧長公式解答即可.詳證明:(1)∵AB是⊙O的直徑,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴=.點(diǎn)睛:此題考查弧長公式,關(guān)鍵是根據(jù)弧長公式和垂徑定理解答.3、(1);(2)四邊形ABCD的面積為32;(3)存在

.【解析】【分析】(1)如圖,作輔助線,證明AE=DE;證明△BDE∽△BCA,得到,列出比例式即可解決問題.(2)(2)連接OB,根據(jù)題意得∠AOB=60°,作AE⊥BD,利用解直角三角形可求AB的長,通過解直角三角形分別求出BC,AD,CD的長,再根據(jù)面積公式求解即可;過點(diǎn)A作AN⊥BC于點(diǎn)N,AM⊥DC,交DC的延長線于點(diǎn)M,連接AC,可得,根據(jù)面積法求出關(guān)于面積的二次函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)求出最值即可.【詳解】解:如圖,過點(diǎn)D作DE⊥AB于點(diǎn)E.則DE//AC;∵AD平分∠BAC,∠BAC=90°,∴∠DAE=45°,∠ADE=90°?45°=45°,∴AE=DE(設(shè)為λ),則BE=4?λ;∵DE//AC,∴△BDE∽△BCA,∴,即:解得:λ=,∴點(diǎn)D到AC的距離.(2)連接OB,∵點(diǎn)B是半圓AC的三等分點(diǎn)(弧AB<弧BC),∴∴∵AC是的直徑,∴∵BD平分∠ABC∴過點(diǎn)A作AE⊥BD于點(diǎn)E,則∴AE=BE設(shè)AE=BE=x,則∵BD=BE+DE=∴x=∴∵∴∴BC=∵BD平分∠ABC∴∴∴AD=CD∵AE⊥DE∴∵,∴∴===32;(3)過點(diǎn)A作AN⊥BC于點(diǎn)N,AM⊥DC,交DC的延長線于點(diǎn)M,連接AC,∵AB=AD∴∠ACB=∠ACD∴AM=AN∵∠ADC+∠ABC=180°,∠ADC+∠ADM=180°,∴∠ABC=∠ADM又∠ANB=∠AMD=90°,∴△ABN≌△ADM∴∵AN=AM,∠BCA=∠DCA,AC=AC∴△ACN≌△ACM∴∵∠ABC=60°∴∠ADC=120°∴∠ADM=60°,∠MAD=30°設(shè)DM=x,則AD=2x,∴∵∴,即∵拋物線對稱軸為x=5∴當(dāng)x=4時,有最大值,為【考點(diǎn)】本題屬于圓綜合題,考查了三角形的面積,解直角三角形,角平分線的性質(zhì)定理,圓周角定理等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考壓軸題.4、54°【解析】【分析】連接OC,OD.求出∠COD的度數(shù),再根據(jù)圓周角定理即可解決問題.【詳解】如圖,連接.∵五邊形是正五邊形,∴,∴,∴90°-36°=54°,∴的余角的度數(shù)為54°.【考點(diǎn)】本題考查了正多邊形和圓、圓周角定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.5、(1)半圓面積為157,扇形的面積為157;(2)能,16平方厘米.【解析】【分析】(1)我們運(yùn)用圓的面積公式求出半圓的面積,用扇形的面積公式求出扇形的面積即可.(2)我們借助第一題的解答結(jié)果,運(yùn)用等量代換的方法可以求出陰影乙的面積.【詳解】(1)因?yàn)镺B=20,所以S

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論