綜合解析四川省邛崍市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)練習(xí)試卷(解析版含答案)_第1頁
綜合解析四川省邛崍市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)練習(xí)試卷(解析版含答案)_第2頁
綜合解析四川省邛崍市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)練習(xí)試卷(解析版含答案)_第3頁
綜合解析四川省邛崍市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)練習(xí)試卷(解析版含答案)_第4頁
綜合解析四川省邛崍市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)練習(xí)試卷(解析版含答案)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省邛崍市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,在中,,,平分,則的度數(shù)是(

)A. B. C. D.2、將一副三角板按如圖所示的方式放置,,,,且點在上,點在上,AC∥EF,則的度數(shù)為(

)A. B. C. D.3、如圖,在中,,,,,連接BC,CD,則的度數(shù)是()A.45° B.50° C.55° D.80°4、如圖,若,,則:①;②;③平分;④;⑤,其中正確的結(jié)論是A.1個 B.2個 C.3個 D.4個5、如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°6、如圖,下列推理正確的是(

)A.∵,∴ B.∵,∴C.∵,∴ D.∵,∴7、如圖,在△ABC中,∠C=70o,沿圖中虛線截去∠C,則∠1+∠2=(

)A.360o B.250o C.180o D.140o8、將一副三角板()按如圖所示方式擺放,使得,則等于()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、請寫出命題“如果,那么”的逆命題:________.2、將“對頂角相等”改寫為“如果...那么...”的形式,可寫為__________.3、如圖,在△ABC中,AC=BC,∠ABC=54°,CE平分∠ACB,AD平分∠CAB,CE與AD交于點F,G為△ABC外一點,∠ACD=∠FCG,∠CBG=∠CAF,連接DG.下列結(jié)論:①△ACF≌△BCG;②∠BGC=117°;③S△ACE=S△CFD+S△BCG;④AD=DG+BG.其中結(jié)論正確的是_____________(只需要填寫序號).4、如圖,在△ABC中,∠ACB=60°,D為△ABC邊AC上一點,BC=CD,點M在BC的延長線上,CE平分∠ACM,且AC=CE.連接BE交AC于F,G為邊CE上一點,滿足CG=CF,連接DG交BE于H.以下結(jié)論:①△ABC≌△EDC;②∠DHF=60°;③若∠A=60°,則AB∥CE;④若BE平分∠ABC中,則EB平分∠DEC;正確的有_____(只填序號)5、如圖,點D是△ABC兩條角平分線AP、CE的交點,如果∠BAC+∠BCA=140°,那么∠ADC=_____°.6、如圖,用鐵絲折成一個四邊形ABCD(點C在直線BD的上方),且∠A=70°,∠BCD=120°,若使∠ABC、∠ADC平分線的夾角∠E的度數(shù)為100°,可保持∠A不變,將∠BCD______(填“增大”或“減小”)________°.7、如圖,已知l1∥l2,直線l分別與l1,l2相交于點C,D,把一塊含30°角的三角尺按如圖位置擺放,若∠1=130°,則∠2=___.三、解答題(7小題,每小題10分,共計70分)1、如圖,∠ABC=31°,又∠BAC的平分線AE與∠FCB的平分線CE相交于E點,求∠AEC的度數(shù).2、如圖,△ABC中,E是AB上一點,過D作DEBC交AB于E點,F(xiàn)是BC上一點,連接DF.若∠AED=∠1.(1)求證:ABDF.(2)若∠1=52°,DF平分∠CDE,求∠C的度數(shù).3、【教材呈現(xiàn)】如圖是華師版七年級下冊數(shù)學(xué)教材第76頁的部分內(nèi)容.請根據(jù)教材提示,結(jié)合圖①,將證明過程補充完整.【結(jié)論應(yīng)用】(1)如圖②,在△中,∠=60°,平分∠,平分∠,求∠的度數(shù).(2)如圖③,將△的∠折疊,使點落在△外的點處,折痕為.若∠=,∠=,∠=,則、、滿足的等量關(guān)系為(用、、的代數(shù)式表示).4、如圖,在△ABC中,∠A=∠DBC=36°,∠C=72°.求∠1,∠2的度數(shù).5、如圖,在△ABC中,∠ABC的平分線BD交∠ACB的平分線CE于點O.(1)求證:.(2)如圖1,若∠A=60°,請直接寫出BE,CD,BC的數(shù)量關(guān)系.(3)如圖2,∠A=90°,F(xiàn)是ED的中點,連接FO.①求證:BC?BE?CD=2OF.②延長FO交BC于點G,若OF=2,△DEO的面積為10,直接寫出OG的長.6、如圖,已知BD⊥AC,EF⊥AC,垂足分別為D、F,∠1=∠2,請將證明∠ADG=∠C過程填寫完整.證明:BD⊥AC,EF⊥AC(已知)∴∠BDC=∠EFC=90°∴BD∥∠2=∠3又∵∠1=∠2(已知)∴∠1=∠3(等量代換)∴DG∥∴∠ADG=∠C7、如圖,點A在MN上,點B在PQ上,連接AB,過點A作交PQ于點C,過點B作BD平分∠ABC交AC于點D,且.(1)求證:;(2)若,求∠ADB的度數(shù).-參考答案-一、單選題1、C【解析】【分析】在中,利用三角形內(nèi)角和為求,再利用平分,求出的度數(shù),再在利用三角形內(nèi)角和定理即可求出的度數(shù).【詳解】∵在中,,.∴.∵平分.∴.∴.故選C.【考點】本題考查了三角形的內(nèi)角和和角平分線的性質(zhì),熟練應(yīng)用性質(zhì)是解決問題的關(guān)鍵.2、C【解析】【分析】根據(jù)平行線的性質(zhì)和三角形的內(nèi)角和定理即可得到結(jié)論.【詳解】∵AC∥EF,∴∠DBE=∠C=45°,∴∠FBD=135°,∵∠E=60°,∠EDF=90°,∴∠F=30°,∴∠FDC=∠F+∠FBD=30°+135°=165°,故選:C.【考點】本題考查了三角形的內(nèi)角和定理,平行線的性質(zhì),正確的識別圖形是解題的關(guān)鍵.3、B【解析】【分析】連接AC并延長交EF于點M.由平行線的性質(zhì)得,,再由等量代換得,先求出即可求出.【詳解】解:連接AC并延長交EF于點M.,,,,,,,故選B.【考點】本題主要考查了平行線的性質(zhì)以及三角形的內(nèi)角和定理,屬于基礎(chǔ)題型.4、C【解析】【分析】由平行線的性質(zhì)得出內(nèi)錯角相等、同位角相等,得出②正確;再由已知條件證出,得出,①正確;由平行線的性質(zhì)得出⑤正確;即可得出結(jié)果.【詳解】解:,,,故②正確;,,,故①正確;,故⑤正確;而不一定平分,不一定等于,故③,④錯誤;故選:C.【考點】本題考查了平行線的判定與性質(zhì),解題的關(guān)鍵是熟練掌握平行線的判定與性質(zhì),并能進行推理論證.5、D【解析】【分析】根據(jù)鄰補角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.6、B【解析】【分析】根據(jù)平行線的判定判斷即可.【詳解】解:A、由∠2=∠4不能推出AD∥BC,故本選項錯誤;B、∵∠1=∠3,∴AD∥BC,故本選項正確;C、由∠4+∠D=180°不能推出AD∥BC,故本選項錯誤;D、由∠4+∠B=180°不能推出AD∥BC,故本選項錯誤;故選:B.【考點】本題考查了平行線的判定的應(yīng)用,注意:同旁內(nèi)角互補,兩直線平行,內(nèi)錯角相等,兩直線平行.7、B【解析】【分析】根據(jù)三角形內(nèi)角和定理得出∠A+∠B=110°,進而利用四邊形內(nèi)角和定理得出答案.【詳解】解:∵△ABC中,∠C=70°,∴∠A+∠B=180°-∠C,∴∠1+∠2=360°-110°=250°,故選:B.【考點】本題主要考查了多邊形內(nèi)角和定理,根據(jù)題意得出∠A+∠B的度數(shù)是解題關(guān)鍵.8、A【解析】【分析】根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)進行計算,即可得到答案.【詳解】解:,.,.故選.【考點】本題考查平行線的性質(zhì)和三角形外角的性質(zhì),解題的關(guān)鍵是掌握平行線的性質(zhì)和三角形外角的性質(zhì).二、填空題1、如果,那么【解析】【分析】根據(jù)逆命題的概念解答即可.【詳解】解:命題“如果,那么”的逆命題是“如果,那么”,故答案為:如果,那么.【考點】此題考查了互逆命題的知識,兩個命題中,如果第一個命題的條件是第二個命題的結(jié)論,而第一個命題的結(jié)論又是第二個命題的條件,那么這兩個命題叫做互逆命題.其中一個命題稱為另一個命題的逆命題.2、如果兩個角互為對頂角,那么這兩個角相等【解析】【分析】根據(jù)命題的形式解答即可.【詳解】將“對頂角相等”改寫為“如果...那么...”的形式,可寫為如果兩個角互為對頂角,那么這兩個角相等,故答案為:如果兩個角互為對頂角,那么這兩個角相等.【考點】此題考查命題的形式,可寫成用關(guān)聯(lián)詞“如果...那么...”連接的形式,準確確定命題中的題設(shè)和結(jié)論是解題的關(guān)鍵.3、①②④【解析】【分析】根據(jù)條件求得∠BAC=∠ABC=54°,∠ACB=72°,∠ACE=∠BCE=36°,∠CAF=∠BAF=27°,利用ASA證明△ACF≌△BCG,再根據(jù)SAS證明△CDF≌△CDG,據(jù)此即可推斷各選項的正確性.【詳解】解:在△ABC中,AC=BC,∠ABC=54°,∴∠BAC=∠ABC=54°,∠ACB=180°-54°-54°=72°,∵AC=BC,CE平分∠ACB,AD平分∠CAB,∴∠ACE=∠BCE=∠ACB=36°,∠CAF=∠BAF=∠BAC=27°,∵∠ACD=∠FCG=72°,∴∠BCG=∠FCG-36°=36°,在△ACF和△BCG中,,∴△ACF≌△BCG(ASA);故①正確;∴∠BGC=∠AFC=180°-36°-27°=117°,故②正確;∴CF=CG,AF=BG,在△CDF和△CDG中,,∴△CDF≌△CDG(SAS),∴DF=DG,∴AD=DF+AF=DG+BG,故④正確;∵S△CFD+S△BCG=S△CFD+S△ACF=S△ACD,而S△ACE不等于S△ACD,故③不正確;綜上,正確的是①②④,故答案為:①②④.【考點】本題考查了全等三角形的判定和性質(zhì),三角形內(nèi)角和定理,角平分線的定義,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,4、①②③④【解析】【分析】①可推導(dǎo)∠ACB=∠ACE=60°,進而可證全等;②先證△BFC≌△DGC,得到∠FBC=∠CDG,∠BFC=∠DFH,從而推導(dǎo)得出∠BCF=∠DHF=60°;③由∠A=60°,∠ACE=60°,可得∠A=∠ACE,即可得出ABCE;④利用△BCE的外角∠ECM和△ABC的外角∠ACM的關(guān)系,結(jié)合∠DEC=∠A可推導(dǎo)得出.【詳解】解:∵∠ACB=60°,∴∠ACM=180°?∠ACB=120°,∵CE平分∠ACM,∴∠ACE=∠MCE=∠ACM=60°,∴∠ACB=∠ACE.在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),故①正確;在△BCF和△DCG中,,∴△BCF≌△DCG(SAS).∴∠CBF=∠CDG.∵∠ECM=∠CBF+∠BEC=60°,∴∠CDG+∠CEB=60°.∵∠DCE+∠CDE+∠CED=180°,∠DCE=60°,∴∠CDE+∠CED=120°,∴∠HDE+∠HED=60°,∴∠DHF=∠HDE+∠HED=60°,故②正確;∵∠A=60°,∠ACE=60°,∴∠A=∠ACE,∴AB∥CE,故③正確;∵BE平分∠ABC,∴∠ABE=∠CBE.∵△BCF≌△DCG,∴∠CBE=∠CDG.∴∠CDG=∠ABE=∠CBE.∵△ABC≌△EDC,∴∠ABC=∠CDE,∴∠CDG=∠ABE=∠CBE=∠EDG.∵∠ECM=∠CBF+∠BEC=60°,∠DHF=∠EDG+∠DEB=60°,∴∠CBF+∠BEC=∠EDG+∠DEB,∴∠BEC=∠DEB,即EB平分∠DEC,故④正確;綜上,正確的結(jié)論有:①②③④.故答案為:①②③④.【考點】本題主要考查了全等三角形的判定定理和性質(zhì)定理,角平分線的定義,三角形的內(nèi)角和定理以及平行線的判定定理,正確找出圖中的全等三角形是解題的關(guān)鍵.5、110【解析】【分析】根據(jù)CE,AP分別平分∠ACB和∠BAC,得∠CAP=∠BAC,∠ACE=∠BCA,再根據(jù)三角形內(nèi)角和定理,求出∠ADC即可.【詳解】解:∵CE,AP分別平分∠ACB和∠BAC,∴∠ACE=∠BCA,∠CAP=∠BAC,∵∠BAC+∠BCA=140°,∴∠CAP+∠ACE=70°,∴∠ADC=180°﹣(∠CAP+∠ACE)=180°﹣70°=110°,故答案為:110.【考點】本題考查了角平分線的性質(zhì)和三角形內(nèi)角和定理,熟練掌握了角平分線的性質(zhì)是解題的關(guān)鍵.6、

增大

10【解析】【分析】利用三角形的外角性質(zhì)先求得∠ABE+∠ADE=30°,根據(jù)角平分線的定義得到∠ABC+∠ADC=60°,再利用三角形的外角性質(zhì)求解即可.【詳解】解:如圖,連接AE并延長,連接AC并延長,∠BED=∠BEF+∠DEF=∠ABE+∠BAD+∠ADE=100°,∵∠BAD=70°,∴∠ABE+∠ADE=30°,∵BE,DE分別是∠ABC、∠ADC平分線,∴∠ABC+∠ADC=2(∠ABE+∠ADE)=60°,同上可得,∠BCD=∠BAD+∠ABC+∠ADC=130°,130°-120°=10°,∴∠BCD增大了10°.故答案為:增大,10.【考點】本題考查了三角形的外角性質(zhì),三角形的內(nèi)角和定理,角平分線的定義等知識,熟練運用題目中所給的結(jié)論是解題的關(guān)鍵.7、20°【解析】【分析】先根據(jù)平行線的性質(zhì),得到∠BDC=50°,再根據(jù)∠ADB=30°,即可得出∠2=20°.【詳解】解:∵∠1=130°,∴∠3=50°,又∵l1∥l2,∴∠BDC=50°,又∵∠ADB=30°,∴∠2=20°,故答案為:20°.【考點】本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,內(nèi)錯角相等.三、解答題1、∠AEC的度數(shù)為15.5°.【解析】【分析】根據(jù)角平分線的定義可得∠EAC=∠BAC,∠ECF=∠BCF,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠BCF=∠ABC+∠BAC,∠ECF=∠AEC+∠EAC,然后整理即可得到∠AEC=∠ABC.【詳解】解:∵AE、CE分別是∠BAC和∠BCF的平分線,∴∠EAC=∠BAC,∠ECF=∠BCF,由三角形的外角性質(zhì)得,∠BCF=∠ABC+∠BAC,∠ECF=∠AEC+∠EAC,∴∠AEC+∠EAC=(∠ABC+∠BAC),∴∠AEC=∠ABC,∵∠ABC=31°,∴∠AEC=×31=15.5°.【考點】本題考查了三角形的內(nèi)角和定理,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),角平分線的定義,熟記性質(zhì)與定理并求出∠AEC=∠ABC是解題的關(guān)鍵.2、(1)見解析(2)【解析】【分析】(1)根據(jù),得出,又因為,等量代換得,最后根據(jù)同位角相等,兩直線平行即可證明;(2)根據(jù),得出,再根據(jù)平分,得出,最后在中利用三角形內(nèi)角和等于即可求解.(1)解:證明:,,又,,;(2)解:,,平分,,在中,,.答:的度數(shù)為.【考點】本題考查了平行線的性質(zhì)和判定,解題的關(guān)鍵是掌握題中各角之間的位置關(guān)系和數(shù)量關(guān)系.3、教材呈現(xiàn):見解析;(1)120°;(2)【解析】【分析】【教材呈現(xiàn)】利用兩直線平行,同位角相等,內(nèi)錯角相等,把三角形三個內(nèi)角轉(zhuǎn)化成一個平角,從而得證.【結(jié)論應(yīng)用】(1)利用角平分線的性質(zhì)得出兩個底角之和,從而求出∠P度數(shù).(2)根據(jù)四邊形BCFD內(nèi)角和為360°,分別表示出各角得出等式即可.【詳解】解:教材呈現(xiàn):∵CD∥BA,∴∠1=∠ACD.∵∠3+∠ACD+∠DCE=180°,,∴.結(jié)論應(yīng)用:(1)∵BP平分,CP平分,∴,.∵,,∴.∵,∴.(2)∵,∴,在△ABC中,,又四邊形BCDF內(nèi)角和為360°,∴,∴.【考點】本題考查平行線的性質(zhì),角平分線的定義,三角形內(nèi)角和定理,翻折等知識,根據(jù)翻折前后對應(yīng)角相等時解題的關(guān)鍵.4、∠1=36°,∠2=72°.【解析】【分析】在△ABC和△BDC中,根據(jù)三角形內(nèi)角和定理,即可得出結(jié)論.【詳解】在△ABC中,∠ABC=180°﹣∠A﹣∠C=180°-36°-72°=72°,∴∠1=∠ABC﹣∠DBC=72°-36°=36°;在△BCD中,∠2=180°﹣∠DBC﹣∠C=180°-36°-72°=72°.【考點】本題考查了三角形的內(nèi)角和定理,注意掌握數(shù)形結(jié)合思想的應(yīng)用.5、(1)見解析(2)BE+CD=BC,(3)①見解析;②【解析】【分析】(1)先根據(jù)三角形內(nèi)角和得:∠BOC=180°?(∠OBC+∠OCB),由角平分線定義得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形內(nèi)角和可得結(jié)論;(2)在BC上截取BM=BE,證明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再證明△DCO≌△MCO可得結(jié)論;(3)①延長OF到點M,使MF=OF,證明△ODF≌△MEF(SAS),推出OD=EM.過點O作CE,BD的垂線,證明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=EM,BE=BK,CD=CH.據(jù)此即可證明結(jié)論;②利用①的結(jié)論以及三角形面積公式即可求解.(1)證明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°?(∠OBC+∠OCB)=180°?(∠ABC+∠ACB)=180°?(180°?∠A)=∠A+90°;(2)解:BE+CD=BC.在BC上截取BM=BE,連接OM,如圖:∵∠BOC=∠A+90°=120°,∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴△BOE≌△BOM,∴∠BOE=∠BOM=60°,∴∠MOC=∠DOC=60°,∵OC為∠DCM的角平分線,∴∠DCO=∠MCO,在△DCO與△MCO中,,∴△DCO≌△MCO(ASA),∴CM=CD,∴BC=BM+CM=BE+CD;(3)①證明:如圖,延長OF到點M,使MF=OF,連接EM,∴OM=2OF.∵F是ED的中點,∴EF=DF,∵∠DFO=∠EFM,∴△ODF≌△MEF(SAS),∴OD=EM.過點O作CE,BD的垂線,分別交BC于點K,H,∴∠OCK+∠OKC=90°.∵∠A=90°,∴∠ACE+∠AEC=90°∵∠ACE=∠OCK,∴∠AEO=∠OKC,∴∠BEO=∠BKO,∴△OBE≌△OBK(AAS),同理可得△ODC≌△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論