中考數(shù)學(xué)總復(fù)習(xí)《 圓》題庫(kù)含答案詳解(精練)_第1頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》題庫(kù)含答案詳解(精練)_第2頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》題庫(kù)含答案詳解(精練)_第3頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》題庫(kù)含答案詳解(精練)_第4頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》題庫(kù)含答案詳解(精練)_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

中考數(shù)學(xué)總復(fù)習(xí)《圓》題庫(kù)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、下列語(yǔ)句,錯(cuò)誤的是()A.直徑是弦 B.相等的圓心角所對(duì)的弧相等C.弦的垂直平分線(xiàn)一定經(jīng)過(guò)圓心 D.平分弧的半徑垂直于弧所對(duì)的弦2、已知點(diǎn)在半徑為8的外,則(

)A. B. C. D.3、如圖,△ABC內(nèi)接于⊙O,∠A=50°.E是邊BC的中點(diǎn),連接OE并延長(zhǎng),交⊙O于點(diǎn)D,連接BD,則∠D的大小為()A.55° B.65° C.60° D.75°4、如圖,、分別切于點(diǎn)、,點(diǎn)為優(yōu)弧上一點(diǎn),若,則的度數(shù)為(

)A. B. C. D.5、如圖,已知在中,是直徑,,則下列結(jié)論不一定成立的是(

)A. B.C. D.到、的距離相等第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,正方形ABCD,邊長(zhǎng)為4,點(diǎn)P和點(diǎn)Q在正方形的邊上運(yùn)動(dòng),且PQ=4,若點(diǎn)P從點(diǎn)B出發(fā)沿B→C→D→A的路線(xiàn)向點(diǎn)A運(yùn)動(dòng),到點(diǎn)A停止運(yùn)動(dòng);點(diǎn)Q從點(diǎn)A出發(fā),沿A→B→C→D的路線(xiàn)向點(diǎn)D運(yùn)動(dòng),到達(dá)點(diǎn)D停止運(yùn)動(dòng).它們同時(shí)出發(fā),且運(yùn)動(dòng)速度相同,則在運(yùn)動(dòng)過(guò)程中PQ的中點(diǎn)O所經(jīng)過(guò)的路徑長(zhǎng)為_(kāi)____.2、如圖,在中,的半徑為點(diǎn)是邊上的動(dòng)點(diǎn),過(guò)點(diǎn)作的一條切線(xiàn)(其中點(diǎn)為切點(diǎn)),則線(xiàn)段長(zhǎng)度的最小值為_(kāi)___.3、如圖,分別以等邊三角形的每個(gè)頂點(diǎn)為圓心、以邊長(zhǎng)為半徑,在另兩個(gè)頂點(diǎn)間作一段圓弧,三段圓弧圍成的曲邊三角形稱(chēng)為勒洛三角形.若等邊三角形的邊長(zhǎng)為,則勒洛三角形的周長(zhǎng)為_(kāi)____.4、已知圓錐的底面半徑為,側(cè)面展開(kāi)圖的圓心角是180°,則圓錐的高是______.5、如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、我們知道,與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,則三角形可以稱(chēng)為圓的外切三角形.如圖1,與的三邊分別相切于點(diǎn)則叫做的外切三角形.以此類(lèi)推,各邊都和圓相切的四邊形稱(chēng)為圓外切四邊形.如圖2,與四邊形ABCD的邊AB,BC,CD,DA分別相切于點(diǎn)則四邊形叫做的外切四邊形.(1)如圖2,試探究圓外切四邊形的兩組對(duì)邊與之間的數(shù)量關(guān)系,猜想:(橫線(xiàn)上填“>”,“<”或“=”);(2)利用圖2證明你的猜想(寫(xiě)出已知,求證,證明過(guò)程);(3)用文字?jǐn)⑹錾厦孀C明的結(jié)論:;(4)若圓外切四邊形的周長(zhǎng)為相鄰的三條邊的比為,求此四邊形各邊的長(zhǎng).2、(1)如圖①,在△ABC中,,AB=4,AC=3,若AD平分∠BAC交于點(diǎn),那么點(diǎn)到的距離為.(2)如圖②,四邊形內(nèi)接于,為直徑,點(diǎn)B是半圓的三等分點(diǎn)(弧?。B接,若平分,且,求四邊形的面積.(3)如圖③,為把“十四運(yùn)”辦成一屆精彩圓滿(mǎn)的體育盛會(huì)很多公園都在進(jìn)行花卉裝扮,其中一塊圓形場(chǎng)地圓O,設(shè)計(jì)人員準(zhǔn)備在內(nèi)接四邊形ABCD區(qū)域內(nèi)進(jìn)行花卉圖案設(shè)計(jì),其余部分方便游客參觀(guān),按照設(shè)計(jì)要求,四邊形ABCD滿(mǎn)足∠ABC=60°,AB=AD,且AD+DC=10(其中),為讓游客有更好的觀(guān)體驗(yàn),四邊形ABCD花卉的區(qū)域面積越大越好,那么是否存在面積最大的四邊形ABCD?若存在,求出這個(gè)最大值,不存在請(qǐng)說(shuō)明理由.3、已知的半徑是.弦.求圓心到的距離;弦兩端在圓上滑動(dòng),且保持,的中點(diǎn)在運(yùn)動(dòng)過(guò)程中構(gòu)成什么圖形,請(qǐng)說(shuō)明理由.4、如圖,在中,,以為直徑的⊙O與相交于點(diǎn),過(guò)點(diǎn)作⊙O的切線(xiàn)交于點(diǎn).(1)求證:;(2)若⊙O的半徑為,,求的長(zhǎng).5、如圖,為的直徑,射線(xiàn)交于點(diǎn)F,點(diǎn)C為劣弧的中點(diǎn),過(guò)點(diǎn)C作,垂足為E,連接.(1)求證:是的切線(xiàn);(2)若,求陰影部分的面積.-參考答案-一、單選題1、B【解析】【分析】將每一句話(huà)進(jìn)行分析和處理即可得出本題答案.【詳解】A.直徑是弦,正確.B.∵在同圓或等圓中,相等的圓心角所對(duì)的弧相等,∴相等的圓心角所對(duì)的弧相等,錯(cuò)誤.C.弦的垂直平分線(xiàn)一定經(jīng)過(guò)圓心,正確.D.平分弧的半徑垂直于弧所對(duì)的弦,正確.故答案選:B.【考點(diǎn)】本題考查了圓中弦、圓心角、弧度之間的關(guān)系,熟練掌握該知識(shí)點(diǎn)是本題解題的關(guān)鍵.2、A【解析】【分析】根據(jù)點(diǎn)P與⊙O的位置關(guān)系即可確定OP的范圍.【詳解】解:∵點(diǎn)P在圓O的外部,∴點(diǎn)P到圓心O的距離大于8,故選:A.【考點(diǎn)】本題主要考查點(diǎn)與圓的位置關(guān)系,關(guān)鍵是要牢記判斷點(diǎn)與圓的位置關(guān)系的方法.3、B【解析】【分析】連接CD,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠CDB=180°﹣∠A=130°,根據(jù)垂徑定理得到OD⊥BC,求得BD=CD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:連接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是邊BC的中點(diǎn),∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故選:B.【考點(diǎn)】本題考查了圓內(nèi)接四邊形的性質(zhì),垂徑定理,等腰三角形的性質(zhì)等知識(shí).正確理解題意是解題的關(guān)鍵.4、C【解析】【分析】要求∠ACB的度數(shù),只需根據(jù)圓周角定理構(gòu)造它所對(duì)的弧所對(duì)的圓心角,即連接OA,OB;再根據(jù)切線(xiàn)的性質(zhì)以及四邊形的內(nèi)角和定理即可求解.【詳解】解:連接OA,OB,∵PA、PB分別切⊙O于點(diǎn)A、B,∴OA⊥AP,OB⊥BP,∴∠PAO=∠PBO=90°,∴∠AOB+∠APB=180°,∵∠AOB=2∠ACB,∠ACB=∠APB,∴3∠ACB=180°,∴∠ACB=60°,故選:C.【考點(diǎn)】此題考查了切線(xiàn)的性質(zhì),圓周角定理,以及四邊形的內(nèi)角和,熟練掌握切線(xiàn)的性質(zhì)是解本題的關(guān)鍵.5、A【解析】【分析】根據(jù)圓心角、弧、弦之間的關(guān)系即可得出答案.【詳解】在中,弦弦,則其所對(duì)圓心角相等,即,所對(duì)優(yōu)弧和劣弧分別相等,所以有,故B項(xiàng)和C項(xiàng)結(jié)論正確,∵,AO=DO=BO=CO∴(SSS)可得出點(diǎn)到弦,的距離相等,故D項(xiàng)結(jié)論正確;而由題意不能推出,故A項(xiàng)結(jié)論錯(cuò)誤.故選:A【考點(diǎn)】此題主要考查圓的基本性質(zhì),解題的關(guān)鍵是熟知圓心角、弧、弦之間的關(guān)系.二、填空題1、【解析】【分析】【詳解】解:畫(huà)出點(diǎn)O運(yùn)動(dòng)的軌跡,如圖虛線(xiàn)部分,則點(diǎn)P從B到A的運(yùn)動(dòng)過(guò)程中,PQ的中點(diǎn)O所經(jīng)過(guò)的路線(xiàn)長(zhǎng)等于3π,故答案為:3π.2、【解析】【分析】如圖:連接OP、OQ,根據(jù),可得當(dāng)OP⊥AB時(shí),PQ最短;在中運(yùn)用含30°的直角三角形的性質(zhì)和勾股定理求得AB、AQ的長(zhǎng),然后再運(yùn)用等面積法求得OP的長(zhǎng),最后運(yùn)用勾股定理解答即可.【詳解】解:如圖:連接OP、OQ,∵是的一條切線(xiàn)∴PQ⊥OQ∴∴當(dāng)OP⊥AB時(shí),如圖OP′,PQ最短在Rt△ABC中,∴AB=2OB=,AO=cos∠A·AB=∵S△AOB=∴,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ=.故答案為.【考點(diǎn)】本題考查了切線(xiàn)的性質(zhì)、含30°直角三角形的性質(zhì)、勾股定理等知識(shí)點(diǎn),此正確作出輔助線(xiàn)、根據(jù)勾股定理確定當(dāng)PO⊥AB時(shí)、線(xiàn)段PQ最短是解答本題的關(guān)鍵.3、πa【解析】【分析】首先根據(jù)等邊三角形的性質(zhì)得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧長(zhǎng)公式求出的長(zhǎng)=的長(zhǎng)=的長(zhǎng)=,那么勒洛三角形的周長(zhǎng)為【詳解】解:如圖.∵△ABC是等邊三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的長(zhǎng)=的長(zhǎng)=的長(zhǎng)=,∴勒洛三角形的周長(zhǎng)為故答案為:πa.【考點(diǎn)】本題考查了弧長(zhǎng)公式,解題的關(guān)鍵是掌握(弧長(zhǎng)為l,圓心角度數(shù)為n,圓的半徑為R),也考查了等邊三角形的性質(zhì).4、【解析】【分析】設(shè)圓錐的母線(xiàn)長(zhǎng)為Rcm,根據(jù)圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線(xiàn)長(zhǎng)和弧長(zhǎng)公式得到2π?5=,然后解方程即可得母線(xiàn)長(zhǎng),然后利用勾股定理求得圓錐的高即可.【詳解】解:設(shè)圓錐的母線(xiàn)長(zhǎng)為Rcm,根據(jù)題意得2π?5=,解得R=10.即圓錐的母線(xiàn)長(zhǎng)為10cm,∴圓錐的高為:(cm).故答案為:.【考點(diǎn)】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線(xiàn)長(zhǎng).5、6【解析】【分析】作直徑CD,如圖,連接BD,根據(jù)圓周角定理得到∠CBD=90°,∠D=60°,然后利用含30度的直角三角形三邊的關(guān)系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×6=6,∴CD=2BD=12,∴OC=6,即⊙O的半徑是6.故答案為6.【考點(diǎn)】本題主要考查圓周角的性質(zhì),解決本題的關(guān)鍵是要熟練掌握?qǐng)A周角的性質(zhì).三、解答題1、(1)=;(2)答案見(jiàn)解析;(3)圓外切四邊形的對(duì)邊之和相等;(4)4;10;12;6【解析】【分析】(1)根據(jù)圓外切四邊形的定義猜想得出結(jié)論;(2)根據(jù)切線(xiàn)長(zhǎng)定理即可得出結(jié)論;(3)由(2)可得出答案;(4)根據(jù)圓外切四邊形的性質(zhì)求出第四邊,利用周長(zhǎng)建立方程求解即可得出結(jié)論.【詳解】(1)∵⊙O與四邊形ABCD的邊AB,BC,CD,DA分別相切于點(diǎn)E,F(xiàn),G,H,∴猜想AB+CD=AD+BC,故答案為:=.(2)已知:四邊形ABCD的四邊AB,BC,CD,DA都于⊙O相切于G,F(xiàn),E,H,求證:AD+BC=AB+CD,證明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圓外切四邊形的對(duì)邊和相等.(3)由(2)可知:圓外切四邊形的對(duì)邊和相等.故答案為:圓外切四邊形的對(duì)邊和相等;(4)∵相鄰的三條邊的比為2:5:6,∴設(shè)此三邊為2x,5x,6x,根據(jù)圓外切四邊形的性質(zhì)得,第四邊為2x+6x?5x=3x,∵圓外切四邊形的周長(zhǎng)為32,∴2x+5x+6x+3x=16x=32,∴x=2,∴此四邊形的四邊的長(zhǎng)為2x=4,5x=10,6x=12,3x=6.即此四邊形各邊的長(zhǎng)為:4,10,12,6.【考點(diǎn)】此題是圓的綜合題,主要考查了新定義圓的外切四邊形的性質(zhì),四邊形的周長(zhǎng),切線(xiàn)長(zhǎng)定理,理解和掌握?qǐng)A外切四邊形的定義是解本題的關(guān)鍵.2、(1);(2)四邊形ABCD的面積為32;(3)存在

.【解析】【分析】(1)如圖,作輔助線(xiàn),證明AE=DE;證明△BDE∽△BCA,得到,列出比例式即可解決問(wèn)題.(2)(2)連接OB,根據(jù)題意得∠AOB=60°,作AE⊥BD,利用解直角三角形可求AB的長(zhǎng),通過(guò)解直角三角形分別求出BC,AD,CD的長(zhǎng),再根據(jù)面積公式求解即可;過(guò)點(diǎn)A作AN⊥BC于點(diǎn)N,AM⊥DC,交DC的延長(zhǎng)線(xiàn)于點(diǎn)M,連接AC,可得,根據(jù)面積法求出關(guān)于面積的二次函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)求出最值即可.【詳解】解:如圖,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E.則DE//AC;∵AD平分∠BAC,∠BAC=90°,∴∠DAE=45°,∠ADE=90°?45°=45°,∴AE=DE(設(shè)為λ),則BE=4?λ;∵DE//AC,∴△BDE∽△BCA,∴,即:解得:λ=,∴點(diǎn)D到AC的距離.(2)連接OB,∵點(diǎn)B是半圓AC的三等分點(diǎn)(弧AB<弧BC),∴∴∵AC是的直徑,∴∵BD平分∠ABC∴過(guò)點(diǎn)A作AE⊥BD于點(diǎn)E,則∴AE=BE設(shè)AE=BE=x,則∵BD=BE+DE=∴x=∴∵∴∴BC=∵BD平分∠ABC∴∴∴AD=CD∵AE⊥DE∴∵,∴∴===32;(3)過(guò)點(diǎn)A作AN⊥BC于點(diǎn)N,AM⊥DC,交DC的延長(zhǎng)線(xiàn)于點(diǎn)M,連接AC,∵AB=AD∴∠ACB=∠ACD∴AM=AN∵∠ADC+∠ABC=180°,∠ADC+∠ADM=180°,∴∠ABC=∠ADM又∠ANB=∠AMD=90°,∴△ABN≌△ADM∴∵AN=AM,∠BCA=∠DCA,AC=AC∴△ACN≌△ACM∴∵∠ABC=60°∴∠ADC=120°∴∠ADM=60°,∠MAD=30°設(shè)DM=x,則AD=2x,∴∵∴,即∵拋物線(xiàn)對(duì)稱(chēng)軸為x=5∴當(dāng)x=4時(shí),有最大值,為【考點(diǎn)】本題屬于圓綜合題,考查了三角形的面積,解直角三角形,角平分線(xiàn)的性質(zhì)定理,圓周角定理等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考?jí)狠S題.3、(1)3;(2)在運(yùn)動(dòng)過(guò)程中,點(diǎn)運(yùn)動(dòng)的軌跡是以為圓心,為半徑的圓【解析】【分析】(1)利用垂徑定理,然后根據(jù)勾股定理即可求得弦心距OD的長(zhǎng);(2)根據(jù)圓的定義即可確定.【詳解】解:連接,作于.就是圓心到弦的距離.在中,∵∴是弦的中點(diǎn)在中,,,圓心到弦的距離為.由知:是弦的中點(diǎn)中點(diǎn)在運(yùn)動(dòng)過(guò)程中始終保持∴據(jù)圓的定義,在運(yùn)動(dòng)過(guò)程中,點(diǎn)運(yùn)動(dòng)的軌跡是以為圓心,為半徑的圓.【考點(diǎn)】考查垂徑定理,作出輔助線(xiàn),構(gòu)造直角三角形是解題的關(guān)鍵.4、(1)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論